融入武装部队的鲸鱼优化算法用于社区发现  

Whale optimization algorithm incorporating armed forcescollaboration for community discovery

在线阅读下载全文

作  者:张其文[1] 关定坤 Zhang Qiwen;Guan Dingkun(School of Computer&Communication,Lanzhou University of Technology,Lanzhou 730050,China)

机构地区:[1]兰州理工大学计算机与通信学院,兰州730050

出  处:《计算机应用研究》2024年第4期1086-1093,共8页Application Research of Computers

基  金:国家自然科学基金资助项目(62162040,62063021)。

摘  要:针对于鲸鱼优化算法(WOA)多样性不足、两搜索阶段信息交流效率低、不平衡的问题,这里借用武装部队协同作战机理,提出一种新的WOA用于社区发现。为解决包围捕食阶段多样性不足的问题,引入“邻居潜力”学习模型,提高WOA的全局搜索能力和学习广度;为解决两捕食阶段信息交流效率的低问题,提出鲸鱼指挥官领导的气泡网捕食,确保搜索信息能有效利用;为解决两种捕食机制不平衡的问题,采用改进的学习自动机引导鲸鱼种群向有希望区域移动。同时,考虑到复杂网络社区发现是离散问题,提出了一种基于拓扑特性的新编码离散演化规则。最后,通过真实数据集测试并与其他算法比较,结果表明,该算法相较于对比算法具有更优的寻优能力,验证了算法的有效性。Aiming at the problems of insufficient diversity of whale optimization algorithm(WOA),inefficient and unbalanced information exchange between the two search phases,this paper proposed an improved WOA based on the armed forces collaborative warfare mechanism for community discovery.In order to solve the problem of insufficient diversity in the encircling predation stage,this paper developed a“neighbor potential”learning model to improve the global search capability and learn breadth of WOA.To solve the problem of inefficient information exchange during the two-predation phase,this paper proposed bubble net predation based on whale commanders,which could ensure effective utilization of search information.To address the imbalance between the two predation mechanisms,this paper proposed an improved learning automaton,which could guide whale populations toward promising areas.Meanwhile,because community discovery in complex networks is a discrete problem,this paper proposed a new coded discrete evolution rule based on topological properties.Finally,this paper tested the proposed algorithms on real data sets and compared them with other algorithms,and simulation experiments show that the proposed algorithm has better optimization ability than the comparison algorithm,verifying the effectiveness of the improved strategy.

关 键 词:复杂网络 社区发现 群体智能 鲸鱼优化 部队协同 

分 类 号:TP391[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象