智能反射面辅助的OFDM系统稀疏信道估计研究  被引量:1

Research on sparse channel estimation for intelligent reflecting surface aided OFDM system

在线阅读下载全文

作  者:朱俊杰[1] 彭玲 Zhu Junjie;Peng Ling(School of Computer&Information Engineering,Central South University of Forestry&Technology,Changsha 410004,China)

机构地区:[1]中南林业科技大学计算机与信息工程学院,长沙410004

出  处:《计算机应用研究》2024年第4期1159-1163,共5页Application Research of Computers

基  金:国家自然科学基金资助项目(62276276)。

摘  要:针对智能反射面(IRS)辅助的宽带正交频分复用(OFDM)系统的信道估计,当前大多数研究都是基于单符号全导频设置,且级联信道系数过多会导致导频开销较大。为此,提出了一种基于时域-角域块稀疏的两阶段信道估计方案。首先,通过分析信道在时域和角域上存在的共同稀疏特性,将级联信道矩阵转换为时域-角域上的块稀疏表示,并将信道估计问题转换为块稀疏矩阵恢复问题。其次,考虑传输导频限制和时域-角域块稀疏特性,提出了一种两阶段稀疏信道估计方案对级联信道进行稀疏恢复。仿真结果表明,相比另外三种基准方案,该方案可以使用较少的导频获得更优的信道估计性能,有效减少了导频开销,且估计准确度更高。For the channel estimation of broadband OFDM system assisted by IRS,most of the current researches are based on the full pilot setting on a single symbol,and excessive cascaded channel coefficients will lead to large pilot overhead.This paper proposed a two-stage channel estimation scheme based on block sparse in time-angle domain.Firstly,by analyzing the common sparse characteristics of the channel in the time domain and the angular domain,this paper transformed the cascaded channel matrix into a block sparse representation in the time domain-angular domain,and converted the channel estimation problem into a block sparse matrix recovery problem.Secondly,this paper proposed a two-stage sparse channel estimation scheme to sparsely recover the cascaded channel considering the transmission pilot limitation and the time-angle domain block sparse characteristics.Simulation results show that compared to the other three benchmark schemes,the proposed scheme can achieve better channel estimation performance with fewer pilots,effectively reducing the pilot overhead and achieving higher estimation accuracy.

关 键 词:智能反射面 正交频分复用 信道估计 压缩感知 

分 类 号:TN928[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象