检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林焕然 朱姗姗 彭凌西[2] 彭绍湖[1] 林煜桐 谢翔 Lin Huanran;Zhu Shanshan;Peng Lingxi;Peng Shaohu;Lin Yutonga;Xie Xiang(School of Electronics&Communication Engineering,Guangzhou University,Guangzhou 510006,China;School of Mechanical&Electrical Engineering,Guangzhou University,Guangzhou 510006,China;Faculty of Electronic&Information Engineering,Guangdong Baiyun University,Guangzhou 510450,China)
机构地区:[1]广州大学电子与通信工程学院,广州510006 [2]广州大学机械与电气工程学院,广州510006 [3]广东白云学院电气与信息工程学院,广州510450
出 处:《计算机应用研究》2024年第4期1275-1280,共6页Application Research of Computers
基 金:广州市教育局高校科研资助项目(202235165)。
摘 要:针对现有方法存在合成灰度图像视觉质量欠佳、重建彩色图像还原度不足的问题,提出一种基于颜色编码和图像隐写术的可逆灰度方法。其利用可逆神经网络构建更高效的颜色编解码器,并引入密集卷积块和通道注意力机制进一步提升网络模型的性能,综合减少编解码过程中的颜色信息丢失。之后,为使灰度图像负载编码信息以及减小嵌入过程导致的图像失真,设计了一种基于修改方向的图像隐写算法,通过自适应权值参数选择,以接近最优的方式满足不同的嵌入容量需求,减少对灰度图像的修改。在Kodak和McMaster数据集上的实验表明,与现有代表性可逆灰度方法相比较,该方法能够生成质量更高的可逆灰度图像以及重建更加还原的彩色图像,在图像可视化时具有更好的视觉效果,在标准参考图像的相似性评价指标方面也取得了更优的性能。To address the problems of poor visual quality of synthesized grayscale and insufficient restoration of reconstructed color image in existing methods,this paper proposed an invertible grayscale method based on color coding and image steganography(IG-CCIS).The proposed method utilized an invertible neural network(INN)to construct an efficient color codec,and introduced dense convolutional blocks and channel attention mechanisms to further improve the performance of the network model,comprehensively reducing the loss of color information.In addition,in order to load encoded information into grayscale images and reduce image distortion caused by the embedding processed,it designed an image steganography algorithm based on exploiting modification direction(EMD).Through adaptive weight parameter selection,it could meet different embedding capacity requirements in a near-optimal manner and reduce the modification of grayscale images.Experimental tested on Kodak and McMaster datasets show that compared with existing representative reversible grayscale methods,the proposed method can generate better-quality reversible grayscale images and reconstruct more realistic color images,with better visual effects in image visualization.It also achieves better performance in terms of similarity evaluation metrics with standard reference images.
关 键 词:可逆灰度方法 颜色编码 图像隐写术 可逆神经网络
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.49