基于前视声呐图像的AUV目标识别与跟踪  被引量:1

AUV target recognition and tracking based on forward looking sonar image

在线阅读下载全文

作  者:郑鹏 曹园山 张超[1] 王健[1] 徐令令[1] ZHENG Peng;CAO Yuan-shan;ZHANG Chao;WANG Jian;XU Ling-ling(State Key Laboratory of Hydrodynamics,China Ship Scientific Research Center,Wuxi 214082,China)

机构地区:[1]中国船舶科学研究中心、水动力学国家重点实验室,江苏无锡214082

出  处:《舰船科学技术》2024年第5期115-119,共5页Ship Science and Technology

摘  要:声呐图像由于水体不均匀、边界不规则以及声呐设备本身性能的限制,导致图像噪声明显、亮度不均、分辨率低,使得水下AUV装备在使用前视声呐进行水下目标检测时难度较大。针对该问题,基于m750d声呐探测获得的AUV声呐数据,进行了数据提取、高斯滤波处理、扇形映射处理,并采用Jet映射对声呐灰度图像进行了伪彩色映射提高数据标注速度和精度,制作获得了4组2 500张声呐图像的AUV目标检测数据集;采用YOLOv4-tiny目标检测算法开展AUV目标检测研究,研究结果表明该方法在该数据集上表现优秀,mAP@0.50达到94.17%,FPS在22帧左右,说明该轻量级网络在水下AUV目标识别与跟踪应用上具有较好的应用价值。The sonar image has obvious noise,uneven brightness and low resolution due to the uneven water body,ir-regular boundary and the limitation of the performance of sonar equipment itself,which makes it difficult for underwater AUV equipment to detect underwater targets using forward-looking sonar.To solve this problem,based on the AUV sonar data obtained from the m750d sonar detection,the data extraction,Gaussian filtering and sector mapping processing are car-ried out,and the Jet mapping is used to pseudo-color map the sonar gray image to improve the data labeling speed and accur-acy,and four sets of AUV target detection data sets of 2500 sonar images are produced;The YOLOv4-tiny target detection algorithm is used to carry out AUV target detection research.The research results show that this method performs well in this dataset,mAP@0.5094.17%,FPS is about 22 frames,which shows that the lightweight network has application value in un-derwater moving target tracking.

关 键 词:前视声呐 Jet映射 AUV目标检测数据集 YOLOv4-tiny目标检测 

分 类 号:U666.7[交通运输工程—船舶及航道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象