Small Cycles Property of Some Cremer Rational Maps and Polynomials  

Small Cycles Property of Some Cremer Rational Maps and

在线阅读下载全文

作  者:Rong FU Ji ZHOU 

机构地区:[1]Faculty of Science,Yibin University,Yibin 644000,Sichuan,China [2]Department of Mathematical Sciences,Sichuan Normal University,Chengdu 610066,China

出  处:《Chinese Annals of Mathematics,Series B》2024年第1期123-136,共14页数学年刊(B辑英文版)

摘  要:This paper concerns the linearization problem on rational maps of degree d≥2 and polynomials of degree d>2 from the perspective of non-linearizability.The authors introduce a set l_(∞) of irrational numbers and show that if α∈l_(∞),then any rational map is not linearizable and has infinitely many cycles in every neighborhood of the fixed point with multiplier λ=e^(2πiα),Adding more constraints to cubic polynomials,they discuss the above problems by polynomial-like maps.For the family of polynomials,with the help of Yoccoz's method,they obtain its maximum dimension of the set in which the polynomials are non-linearizable.

关 键 词:Irrationally indifferent fixed point Linearization problem Small cycles property 

分 类 号:O19[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象