High-Order Two-Scale Asymptotic Paradigm for the Elastodynamic Homogenization of Periodic Composites  

在线阅读下载全文

作  者:Wei-Zhi Luo Mu He Liang Xia Qi-Chang He 

机构地区:[1]State Key Laboratory of Intelligent Manufacturing Equipment and Technology,Huazhong University of Science and Technology,Wuhan 430074,China [2]Laboratoire Modélisation et Simulation Multi-Echelle,MSME UMR 8208 CNRS,Universite Gustave Eiffel,77454 Marne-la-Vallée,France

出  处:《Acta Mechanica Solida Sinica》2024年第1期124-138,共15页固体力学学报(英文版)

摘  要:The classical two-scale asymptotic paradigm provides macroscopic and microscopic analyses for the elastodynamic homogenization of periodic composites based on the spatial or/and temporal variable,which offers an approximate framework for the asymptotic homogenization analysis of the motion equation.However,in this framework,the growing complexity of the homogenization formulation gradually becomes an obstacle as the asymptotic order increases.In such a context,a compact,fast,and accurate asymptotic paradigm is developed.This work reviews the high-order spatial two-scale asymptotic paradigm with the effective displacement field representation and optimizes the implementation by symmetrizing the tensor to be determined.Remarkably,the modified implementation gets rid of the excessive memory consumption required for computing the high-order tensor,which is demonstrated by representative one-and two-dimensional cases.The numerical results show that(1)the contrast of the material parameters between media in composites directly affects the convergence rate of the asymptotic results for the homogenization of periodic composites,(2)the convergence error of the asymptotic results mainly comes from the truncation error of the modified asymptotic homogenized motion equation,and(3)the excessive norm of the normalized wavenumber vector in the two-dimensional inclusion case may lead to a non-convergence of the asymptotic results.

关 键 词:Composites HOMOGENIZATION Asymptotic analysis Dynamics Dispersion 

分 类 号:O17[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象