检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张墨习 陈兴隆 伍家忠[2,3] 吕伟峰 丁奎升[4] ZHANG Moxi;CHEN Xinglong;WU Jiazhong;LÜWeifeng;DING Kuisheng(University of Chinese Academy of Sciences,Beijing City,100190,China;Institute of Porous Flow and Fluid Mechanics,Chinese Academy of Sciences,Langfang City,Hebei Province,065007,China;State Key Laboratory of Enhanced Oil and Gas Recovery Research Institute of Petroleum Exploration&Development,Beijing City,100083,China;Beijing Hanneng Hydrocarbon Source Technology Co.,Ltd.,Beijing City,102400,China)
机构地区:[1]中国科学院大学,北京100190 [2]中国科学院渗流流体力学研究所,河北廊坊065007 [3]中国石油勘探开发研究院提高油气采收率全国重点实验室,北京100083 [4]北京瀚能烃源科技有限公司,北京102400
出 处:《油气地质与采收率》2024年第2期86-95,共10页Petroleum Geology and Recovery Efficiency
基 金:中国石油股份公司重大专项“功能性水驱关键技术研究”(2021DJ1302);提高油气采收率全国重点实验室开放课题“水气分散体系在管道空间和油藏孔隙内的流动模拟研究”(2022-KFKT-01)。
摘 要:水气分散体系驱油技术是针对低渗透油田采出程度低研发的新型提高采收率技术,目前已在长庆油田取得明显增油效果,但分散体系中微气泡与孔隙作用复杂,对其微观驱油机理的研究正逐步深入。根据低渗透、非均质岩心的特点,制作边长为1.5 cm的玻璃刻蚀模型,在油藏温压条件下,进行CO_(2)-水分散体系渗流实验。通过观察微气泡与油、水、岩石相互作用过程,获取气泡吸附能力、推动油膜能力、气泡弹性能量等数据,进而定量表征分析驱油效果。实验结果表明:微气泡与油界面结合,具有特殊的吸附油膜现象,与水驱、气驱等作用机理显著不同。驱替过程相邻气泡间的合并也促进了油膜汇聚,同时微气泡的合并有助于气泡的流动,使吸附在气泡表面的油膜随气泡运移。微气泡运移时,气泡体积因压力降低而膨胀,所释放的弹性能量能够推动吸附在壁面的油膜运移。此外,采用Volume of Fluid多相流模型,对水气分散体系中微气泡推动油膜的运移过程进行模拟及分析,得到驱替油膜的主要因素是微气泡形变产生的弹性能量和微气泡自身的能量。气泡的能量作用在气泡前缘,通过与油膜表面接触产生推动作用。The oil displacement technology of the water and gas dispersion system is a new enhanced oil recovery technology devel‐oped for low-permeability oilfields with low recoveries,which has obviously increased oil production in Changqing Oilfield.How‐ever,the effects among microbubbles in the dispersion system and pores are complex,and the research on its microscopic oil dis‐placement mechanism is gradually deepening.According to the characteristics of heterogeneous low permeability core,a glass etch‐ing model with a side length of 1.5 cm was made,and the flow experiment of the CO_(2)-water dispersion system was carried out un‐der the conditions of reservoir temperature and pressure.The data such as bubble adsorption capacity,oil film pushing capacity,and bubble elastic energy were obtained by observing the interaction processes among microbubbles and oil,water,and rocks,and then the oil displacement effects were quantitatively characterized and analyzed.The experimental results show that the microbubble combines with the oil interface,to form a special oil adsorption film,which is significantly different from the mechanisms of water flooding and gas flooding.The merging of adjacent bubbles in the displacement process also promotes the convergence of oil films,and the merging of microbubbles helps the flow of bubbles so that the oil film adsorbed on the surface of the bubbles moves with the bubbles.The bubble volume expands due to the decrease in pressure,and the elastic energy released can promote the migration of the oil film adsorbed on the wall when the microbubble is transported.In addition,the oil film migration process of the micro‐bubbles in the water and gas dispersion system was simulated and analyzed with the Volume of Fluid multiphase flow model,and the main factors that displace the oil film were obtained,which are the elastic energy generated by the deformation of the micro‐bubbles and the energy of the microbubbles themselves.The energy of the bubble acts on the leading edge of the bubble
关 键 词:水气分散体系 CO_(2) 弹性能量 吸附效应 多相流模拟
分 类 号:TE3[石油与天然气工程—油气田开发工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28