检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张佳乐 朱诚诚 成翔 孙小兵[1] 陈兵[3] ZHANG Jiale;ZHU Chengcheng;CHENG Xiang;SUN Xiaobing;CHEN Bing(School of Information Engineering,Yangzhou University,Yangzhou 225127,China;Key Laboratory of Flying Internet,Civil Aviation University of China,Tianjin 300300,China;College of Computer Science and Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China)
机构地区:[1]扬州大学信息工程学院,江苏扬州225127 [2]中国民航大学民航飞联网重点实验室,天津300300 [3]南京航空航天大学计算机科学与技术学院,江苏南京211106
出 处:《通信学报》2024年第3期182-196,共15页Journal on Communications
基 金:国家自然科学基金资助项目(No.62206238);江苏省基础研究计划自然科学基金资助项目(No.BK20220562);江苏省高等学校基础科学(自然科学)研究基金资助项目(No.22KJB520010);中国博士后科学基金资助项目(No.2023M732985);中国民航大学民航飞联网重点实验室开放基金资助项目(No.MHFLW202304);江苏省研究生科研创新计划基金资助项目(No.KYCX23_3534)。
摘 要:针对现有联邦学习后门防御方法不能实现对模型已嵌入后门特征的有效清除同时会降低主任务准确率的问题,提出了一种基于对比训练的联邦学习后门防御方法 Contra FL。利用对比训练来破坏后门样本在特征空间中的聚类过程,使联邦学习全局模型分类结果与后门触发器特征无关。具体而言,服务器通过执行触发器生成算法构造生成器池,以还原全局模型训练样本中可能存在的后门触发器;进而,服务器将触发器生成器池下发给各参与方,各参与方将生成的后门触发器添加至本地样本,以实现后门数据增强,最终通过对比训练有效消除后门攻击的负面影响。实验结果表明,Contra FL能够有效防御联邦学习中的多种后门攻击,且效果优于现有防御方法。In response to the inadequacy of existing defense methods for backdoor attacks in federated learning to effectively remove embedded backdoor features from models,while simultaneously reducing the accuracy of the primary task,a federated learning backdoor defense method called ContraFL was proposed,which utilized contrastive training to disrupt the clustering process of backdoor samples in the feature space,thereby rendering the global model classifications in federated learning independent of the backdoor trigger features.Specifically,on the server side,a trigger generation algorithm was developed to construct a generator pool to restore potential backdoor triggers in the training samples of the global model.Consequently,the trigger generator pool was distributed to the participants by the server,where each participant added the generated backdoor triggers to their local samples to achieve backdoor data augmentation.Experimental results demonstrate that ContraFL effectively defends against various backdoor attacks in federated learning,outperforming existing defense methods.
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145