检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵文竹 袁冠[1,2] 张艳梅 乔少杰[3] 王森章[4] 张雷 ZHAO Wen-Zhu;YUAN Guan;ZHANG Yan-Mei;QIAO Shao-Jie;WANG Sen-Zhang;ZHANG Lei(School of Computer Science and Technology,China University of Mining and Technology,Xuzhou 221116,China;Engineering Research Center of Mine digitalization of Ministry of Education,Xuzhou 221116,China;School of Software Engineering,Chengdu University of Information Technology,Chengdu 610225,China;School of Computer Science and Engineering,Central South University,Changsha 410083,China;Shanghai Research Institute for Intelligent Autonomous Systems,Tongji University,Shanghai 201210,China)
机构地区:[1]中国矿业大学计算机科学与技术学院,江苏徐州221116 [2]矿山数字化教育部工程研究中心,江苏徐州221116 [3]成都信息工程大学软件工程学院,四川成都610225 [4]中南大学计算机学院,湖南长沙410083 [5]同济大学上海自主智能无人系统科学中心,上海201210
出 处:《软件学报》2024年第4期1751-1773,共23页Journal of Software
基 金:国家自然科学基金(62272461,71774159,61871686,62272066);中国博士后科学基金(2021T140707);徐州市科技基金(KC22047)。
摘 要:城市交通流量预测是构建绿色低碳、安全高效的智能交通系统的重要组成部分.时空图神经网络由于具有强大的时空数据表征能力,被广泛应用于城市交通流量预测.当前,时空图神经网络在城市交通流量预测中仍存在以下两方面局限性:1)直接构建静态路网拓扑图对城市空间相关性进行表示,忽略了节点的动态交通模式,难以表达节点流量之间的时序相似性,无法捕获路网节点之间在时序上的动态关联;2)只考虑路网节点的局部空间相关性,忽略节点的全局空间相关性,无法建模交通路网中局部区域和全局空间之间的依赖关系.为打破上述局限性,提出了一种多视角融合的时空动态图卷积模型用于预测交通流量:首先,从静态空间拓扑和动态流量模式视角出发,构建路网空间结构图和动态流量关联图,并使用动态图卷积学习节点在两种视角下的特征,全面捕获城市路网中多元的空间相关性;其次,从局部视角和全局视角出发,计算路网的全局表示,将全局特征与局部特征融合,增强路网节点特征的表现力,发掘城市交通流量的整体结构特征;接下来,设计了局部卷积多头自注意力机制来获取交通数据的动态时间相关性,实现在多种时间窗口下的准确流量预测;最后,在4种真实交通数据上的实验结果,证明了该模型的有效性和准确性.Traffic flow prediction is an essential component of environmental,safe,and efficient intelligent transportation system.Due to the powerful spatial-temporal data representation ability,spatial-temporal graph neural network is widely used in traffic flow prediction.Nevertheless,existing spatial-temporal graph neural network based traffic flow prediction models have two limitations.(1)The static topology graph constructed from city spatial correlation ignores the dynamic traffic patterns,which are unable to reflect the temporal dynamic correlation between nodes in road network;and(2)only considering the spatial correlation of local traffic areas lacks the spatial correlations between the local region and the global road network.To overcome the above limitations,this study proposes a multi-view fused spatial-temporal dynamic graph convolutional network model for traffic flow prediction.Firstly,it constructs a road network spatial structure graph and a dynamic traffic-flow association graph from the perspectives of static spatial topology and dynamic traffic patterns,and uses dynamic graph convolution to learn the node features from both perspectives,comprehensively capturing the diverse spatial correlations in the road network.After that,from the local and global perspectives,it calculates the global representation of the road network and fuses global features with local features to enhance the expressiveness of node features and explore the global structural features of traffic flow.Finally,the model designs a local convolutional multi-head self-attention mechanism to obtain the dynamic temporal correlation of traffic data,achieving accurate traffic flow prediction under multiple time windows.The experimental results on four real traffic data demonstrate the effectiveness and universality of the proposed model.
关 键 词:交通流量预测 多视角时空特征 图卷积网络(GCN) 时空图数据 注意力机制
分 类 号:TP18[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222