检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈凡[1,2] 陈刘明 王曼 徐鸿琪[1] 周小雨 CHEN Fan;CHEN Liuming;WANG Man;XU Hongqi;ZHOU Xiaoyu(School of Electric Power Engineering,Nanjing Institute of Technology,Nanjing 211167,Jiangsu Province,China;State Key Laboratory of Smart Grid Protection and Control,Nanjing 211106,Jiangsu Province,China)
机构地区:[1]南京工程学院电力工程学院,江苏省南京市211167 [2]智能电网保护和运行控制国家重点实验室,江苏省南京市211106
出 处:《电网技术》2024年第4期1477-1486,I0030,I0031-I0033,共14页Power System Technology
基 金:智能电网保护和运行控制国家重点实验室项目(SGTYHT/20-JS-221);南京工程学院大学生科技创新项目(TB202317057,TB202317055)。
摘 要:基于深度学习的场景生成方法能够自适应挖掘历史数据中高维非线性特征,在风光出力的不确定性建模中得到了广泛应用。然而,基于深度学习的场景生成方法多为黑盒模型,存在可解释性差、生成不可控等问题。为此,提出了一种基于改进信息最大化生成对抗网络(information maximizing generative adversarial nets,Info GAN)的风光出力场景生成方法。该方法在目标函数中增加了基于互信息的正则化项,最大化控制编码与生成场景之间的互信息,无监督学习控制编码与生成场景统计特征的映射关系,并引入Gumbel-Softmax分布提高了生成场景的质量。结合风电场和光伏电站的真实数据进行了算例分析,算例结果表明,所提方法不仅能准确描述风光出力不确定性,而且具有可解释性,能够可控生成指定风光出力场景。The scenario generation method based on deep learning can adaptively capture the high-dimensional nonlinear features in historical data and has been widely used in the uncertainty modeling of wind power and photovoltaic output.However,most scenario-generation methods based on deep learning are black-box models,which have problems such as poor interpretability and uncontrollable generation.Therefore,a scenario set constructing method of wind power and photovoltaic output based on improved information maximization generation adversarial network(InfoGAN)is proposed.In this method,the mutual information regularization term is added to the objective function to maximize the mutual information between the control coding and the generation scenario,unsupervised learning controls the mapping relationship between the coding and the generation scenario statistical features,and Gumbel-Softmax distribution is introduced to improve the quality of the generation scenario.The results show that the proposed method can not only accurately describe the uncertainty of wind power and photovoltaic output but also be interpretable and generate the specified wind power and photovoltaic output scenario.
关 键 词:场景生成 风光出力 可解释性 信息最大化生成对抗网络 Gumbel-Softmax分布 可控生成
分 类 号:TM614[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222