检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:靳丹亚 黄涛 崔建 JIN Danya;HUANG Tao;CUI Jian(School of Mathematics and Statistics,Anhui Normal University,Wuhu 241002,China)
机构地区:[1]安徽师范大学数学与统计学院,安徽芜湖241002
出 处:《南通大学学报(自然科学版)》2024年第1期87-94,共8页Journal of Nantong University(Natural Science Edition)
基 金:安徽省自然科学基金项目(2008085MA06);金融数学福建省高校重点实验室项目(JR202203);安徽省教育厅研究项目(gxyqZD2019009)。
摘 要:设R是一个环,如果U(R)=U_(c)(R)+J^(#)(R),则称R是GU_(c)J环;如果对于任意a∈R,都存在g∈U_(c)(R),p^(2)=p∈R,d∈J^(#)(R)使得ag=p+d(且ap=pa),则称R是(强)J^(#)-U_(c)-clean环。GU_(c)J环和J^(#)-U_(c)-clean环分别是GUJ环和GJ-clean环的真推广。文章研究了GU_(c)J环的基本性质,证明了R是GU_(c)J环当且仅当R/J是U_(c)U环且U_(c)(R/J)=(U_(c)(R)+J)/J,R是U_(c)J环当且仅当R是GU_(c)J环且R/J是reduced的。此外,给出了(强)J^(#)-U_(c)-clean环的例子,得到了(强)J^(#)-U_(c)-clean环的性质和一些等价刻画,证明了若R是一个交换环,则R是GJ-clean环当且仅当存在整数n≥1使得T_(n)(R)是GJ-clean环,当且仅当存在整数n≥2使得T_(n)(R)是J^(#)-U_(c)-clean环。进一步地,研究了强J^(#)-U_(c)-clean环的Morita不变性。A ring R is GU_(c)J if U(R)=U_(c)(R)+J^(#)(R);R is(strongly)J^(#)-U_(c)-clean ring if for any a∈R,there exists g∈U_(c)(R),p^(2)=p∈R,d∈J^(#)(R),such that ag=p+d(and ap=pa).GU_(c)J rings and J^(#)-U_(c)-clean rings are proper generalizations of GUJ rings and GJ-clean rings,respectively.The properties of GU_(c)J rings are obtained.It is proved that a ring R is GU_(c)J if and only if R/J is U_(c)U and U_(c)(R/J)=(U_(c)(R)+J)/J,R is a U_(c)J ring if and only if R is GU_(c)J and R/J is reduced.Furthermore,examples,extension properties and some equivalent characterizations of(strongly)J^(#)-U_(c)-clean rings are studied,and it is proved that if R is a commutative ring,then R is GJ-clean if and only if T_(n)(R)is GJ-clean for some integer n≥1,if and only if T_(n)(R)is J^(#)-U_(c)-clean for some integer n≥2.Additionally,the study explores the Morita invariance of strong J^(#)-U_(c)-clean rings.
关 键 词:GUJ环 GJ-clean环 GU_(c)J环 J^(#)-U_(c)-clean环 强J^(#)-U_(c)-clean环
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.135.206.125