Innovative Analysis Ready Data(ARD)product and process requirements,software system design,algorithms and implementation at the midstream as necessary-but-notsufficient precondition of the downstream in a new notion of Space Economy 4.0-Part 2:Software developments  被引量:1

在线阅读下载全文

作  者:Andrea Baraldi Luca D.Sapia Dirk Tiede Martin Sudmanns Hannah Augustin Stefan Lang 

机构地区:[1]Spatial Services GmbH,Salzburg,Austria [2]CGI Italy,Frascati,Italy [3]Department of Geoinformatics-Z_GIS,University of Salzburg,Salzburg,Austria

出  处:《Big Earth Data》2023年第3期694-811,共118页地球大数据(英文)

基  金:ASAP 16 project call,project title:SemantiX-A cross-sensor semantic EO data cube to open and leverage essential climate variables with scientists and the public,Grant ID:878939;ASAP 17 project call,project title:SIMS-Soil sealing identification and monitoring system,Grant ID:885365.

摘  要:Aiming at the convergence between Earth observation(EO)Big Data and Artificial General Intelligence(AGI),this paper consists of two parts.In the previous Part 1,existing EO optical sensory imagederived Level 2/Analysis Ready Data(ARD)products and processes are critically compared,to overcome their lack of harmonization/standardization/interoperability and suitability in a new notion of Space Economy 4.0.In the present Part 2,original contributions comprise,at the Marr five levels of system understanding:(1)an innovative,but realistic EO optical sensory image-derived semantics-enriched ARD co-product pair requirements specification.First,in the pursuit of third-level semantic/ontological interoperability,a novel ARD symbolic(categorical and semantic)co-product,known as Scene Classification Map(SCM),adopts an augmented Cloud versus Not-Cloud taxonomy,whose Not-Cloud class legend complies with the standard fully-nested Land Cover Classification System’s Dichotomous Phase taxonomy proposed by the United Nations Food and Agriculture Organization.Second,a novel ARD subsymbolic numerical co-product,specifically,a panchromatic or multispectral EO image whose dimensionless digital numbers are radiometrically calibrated into a physical unit of radiometric measure,ranging from top-of-atmosphere reflectance to surface reflectance and surface albedo values,in a five-stage radiometric correction sequence.(2)An original ARD process requirements specification.(3)An innovative ARD processing system design(architecture),where stepwise SCM generation and stepwise SCM-conditional EO optical image radiometric correction are alternated in sequence.(4)An original modular hierarchical hybrid(combined deductive and inductive)computer vision subsystem design,provided with feedback loops,where software solutions at the Marr two shallowest levels of system understanding,specifically,algorithm and implementation,are selected from the scientific literature,to benefit from their technology readiness level as proof of feasibility,required in

关 键 词:Analysis Ready Data Artificial General Intelligence Artificial Narrow Intelligence big data cognitive science computer vision Earth observation essential climate variables Global Earth Observation System of(component)Systems inductive/deductive/hybrid inference Scene Classification Map Space Economy 4.0 radiometric corrections of optical imagery from atmospheric topographic adjacency and bidirectional reflectance distribution function effects semantic content-based image retrieval 2D spatial topology-preserving/retinotopic image mapping world ontology(synonym for conceptual/mental/perceptual model of the world) 

分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论] TP39[自动化与计算机技术—计算机科学与技术] P2[天文地球—测绘科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象