An Adaptive Local Grid Nesting-based Genetic Algorithm for Multi-earth Observation Satellites' Area Target Observation  

在线阅读下载全文

作  者:Ligang Xing Wei Xia Xiaoxuan Hu Waiming Zhu Yi Wu 

机构地区:[1]School of Management,Hefei University of Technology,Hefei 230009,China [2]Key Laboratory of Process Optimization and Inteligent Decision-making,Ministry of Education,Hefei 230009,China [3]Intelligent Interconnected Systems Laboratory of Anhui Province,Hefei 230009,China

出  处:《Journal of Systems Science and Systems Engineering》2024年第2期232-258,共27页系统科学与系统工程学报(英文版)

基  金:supported in part by the National Natural Science Foundation of China(NSFC),under Grant Nos.72271074 and 72071064.

摘  要:The Scheduling of the Multi-EOSs Area Target Observation(SMEATO)is an EOS resource schedul-ing problem highly coupled with computational geometry.The advances in EOS technology and the ex-pansion of wide-area remote sensing applications have increased the practical significance of SMEATO.In this paper,an adaptive local grid nesting-based genetic algorithm(ALGN-GA)is proposed for developing SMEATO solutions.First,a local grid nesting(LGN)strategy is designed to discretize the target area into parts,so as to avoid the explosive growth of calculations.A genetic algorithm(GA)framework is then used to share reserve information for the population during iterative evolution,which can generate high-quality solutions with low computational costs.On this basis,an adaptive technique is introduced to determine whether a local region requires nesting and whether the grid scale is sufficient.The effectiveness of the proposed model is assessed experimentally with nine randomly generated tests at different scales.The results show that the ALGN-GA offers advantages over several conventional algorithms in 88.9%of instances,especially in large-scale instances.These fully demonstrate the high efficiency and stability of the ALGN-GA.

关 键 词:Multi-EOSs scheduling area target observation adaptive genetic algorithm local grid nesting 

分 类 号:N94[自然科学总论—系统科学] TP39[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象