检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:崔春生 田志勇[2] 许洋 CUI Chunsheng;TIAN Zhiyong;XU Yang(School of Computer and Information Engineering,Henan University of Economics and Law,Zhengzhou 450046,China;School of Information,Beijing Wuzi University,Beijing 101149,China)
机构地区:[1]河南财经政法大学计算机与信息工程学院,郑州450046 [2]北京物资学院信息学院,北京101149
出 处:《系统工程理论与实践》2024年第2期645-660,共16页Systems Engineering-Theory & Practice
基 金:北京市教育委员会科研计划(KM202110037003);教育部人文社会科学研究规划基金(23YJA860004);河南省高等学校哲学社会科学基础研究重大项目(2024-JCZD-27);国家自然科学基金(72101033)。
摘 要:当用户前往共享单车站点租车而站点无自行车或用户还车而无空桩时,将发生未满足租车或还车服务,造成经营方收益损失.为了优化服务,以包含停运期和营运期、在停运期进行自行车静态调度的共享单车系统为研究对象,调度成本和未满足服务损失成本为目标函数,调度卡车启用、旅行路线及站点间车辆调度为决策变量,营运期站点在站自行车数量为状态变量,综合分析调度策略与站点间租还车需求相互作用引发状态变量变化的动态演化过程,分析调度活动的内在逻辑,构建非线性静态调度优化模型,提出一种线性化方法,将其转化为线性规划模型.然后,根据问题特性设计了一种可求解大规模问题的人工蜂群-贪婪算法.最后,应用数值算例对问题性质和算法性能进行分析,结果显示单位租还车损失成本和调度能力对调度优化效果有重要影响,人工蜂群-贪婪算法在求解大规模问题时具有一定优势.研究成果可为共享单车调度提供决策支持.When users go to the station for bicycle rental or return,if there are no bicycles or parking spaces at the station,it will make the user’s rental or return needs unable to be met,resulting in losses to the company.Facing this challenge,this study develops a nonlinear static repositioning optimization model for BSS,which considers two periods,namely operation and shutdown periods.The bike repositioning occurs during shutdown period.In the model,the objective functions include the repositioning costs and unmet service cost,the decision variables are truck activation,travel routes,and vehicle repositioning between stations,and the state variable includes the number of bikes at each station during the operation period.Analyses are conducted on the dynamic evolution process of the state variable,which is caused by repositioning strategy and the interaction of rental and return demands between stations.The internal logic of the repositioning is also analyzed,and a linearization method is employed to linearize the model.Then,an artificial bee colony-greedy algorithm is designed to solve large-scale problems based on the problem characteristics.Finally,numerical examples are used to analyze the problem properties and algorithm’s performance.The results show that the unit unmet service cost and repositioning capacity have significant impacts on repositioning optimization.The advantages of the artificial bee colony-greedy algorithm in solving large-scale problems have been verified.This research can provide decision support for the repositioning of BSS.
关 键 词:共享单车 租还车需求 静态调度 线性化 人工蜂群-贪婪算法
分 类 号:U491[交通运输工程—交通运输规划与管理] O221.1[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.12.163.164