检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴奇鸿 张斌 段功豪 郭昶 王磊[1] WU Qihong;ZHANG Bin;DUAN Gonghao;GUO Chang;WANG Lei(Hubei Provincial Key Laboratory of Intelligent Robot,Wuhan Institute of Technology,Wuhan 430205,China;Hubei Provincial Key Laboratory of Advanced Control and Intelligent Automation of Complex System,Wuhan 430079,China)
机构地区:[1]武汉工程大学智能机器人湖北省重点实验室,武汉430205 [2]复杂系统先进控制与智能自动化湖北省重点实验室,武汉430079
出 处:《遥感信息》2024年第1期146-156,共11页Remote Sensing Information
基 金:湖北省自然科学基金面上项目(2022CFCO31);高等学校学科创新引智计划项目(B17040)。
摘 要:针对高分辨率遥感影像中建筑目标较小和背景信息冗余带来的挑战,提出了一种称为FE-DETR(feature enhancement-detection with transformer)的端到端目标检测算法。首先,利用拼接融合模块(concatenation fusion module,CFM)融合不同尺度的特征层,缓解小建筑目标特征缺失问题;其次,使用全局通道注意力(global channel attention,GCA)模块细化融合后的特征。具体来说,该模块通过构建通道间的关系矩阵,提高模型对目标的感知能力,有效缓解复杂背景信息带来的干扰。最后,在WCH(Wuhan caidian house)、EA(east Asia)和CBC(city building of China)数据集上评估该算法的检测性能。实验结果表明,所提出的改进算法在上述3个数据集上AP_(50)分别提高了0.8%、0.6%和0.6%,验证了该算法的有效性。Aiming at the challenges brought by small building objects and redundant background information in high-resolution remote sensing images,we propose an end-to-end object detection algorithm called FE-DETR(feature enhancement-detection with transformer).Firstly,the concatenation fusion module(CFM)is used to fuse feature layers of different scales to alleviate the problem of missing small building object features.Secondly,the fused features are refined using a global channel attention(GCA)module.Specifically,this module improves the model’s ability to perceive the object by constructing a relationship matrix between channels,and effectively alleviates the interference caused by complex background information.Finally,we evaluate the detection performance of our algorithm on WCH(Wuhan caidian house),EA(east Asia)and CBC(city building of China)datasets.The experimental results show that the improved algorithm proposed in this paper increases the AP_(50) by 0.8%,0.6%and 0.6%respectively on the above three datasets,which verifies the effectiveness of the improvement in this paper.
关 键 词:建筑物检测 高分辨率 特征融合 全局通道注意力 DETR
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249