检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王勇 Wang Yong(Steel Mill,Laiwu Branch of Shandong Iron&Steel Co.,Ltd.,Jinan Shandong 271104,China)
机构地区:[1]山东钢铁股份有限公司莱芜分公司型钢厂,山东济南271104
出 处:《山西冶金》2024年第2期84-86,共3页Shanxi Metallurgy
摘 要:在传统的型钢轧制过程中,质量监测与控制主要依赖人工经验和一些简单的测量工具,存在一定的局限性。针对此,提出了一种以机器视觉、人工智能和自动化控制为核心的方法。利用机器视觉技术捕获轧制过程中的图像数据,并运用人工智能算法进行深度学习和特征提取,以实现快速、准确的质量检测与分类。经过试验分析,该方法能够有效地实时监测和识别多种质量缺陷。利用自动化控制技术的精准实施,成功降低了废品率,并提高了生产效率,旨在为型钢轧制中的质量监测与控制技术的创新提供理论依据和实践指导。In the traditional steel rolling process,quality monitoring and control mainly rely on manual experience and some simple measurement tools,which have certain limitations.A method based on machine vision,artificial intelligence,and automation control has been proposed to address this issue.Using machine vision technology to capture image data during the rolling process,and applying artificial intelligence algorithms for deep learning and feature extraction to achieve fast and accurate quality detection and classification.After experimental analysis,this method can effectively monitor and identify various quality defects in real time.The precise implementation of automation control technology has successfully reduced the scrap rate and improved production efficiency,aiming to provide theoretical basis and practical guidance for the innovation of quality monitoring and control technology in section steel rolling.
分 类 号:TG331[金属学及工艺—金属压力加工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198