检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:魏忠诚[1,2] 陈炜 董延虎 连彬 王巍 赵继军[1,2] WEI Zhongcheng;CHEN Wei;DONG Yanhu;LIAN Bin;WANG Wei;ZHAO Jijun(School of Information and Electrical Engineering,Hebei University of Engineering,Handan 056038,China;Hebei Key Laboratory of Security&Protection Information Sensing and Processing,Handan 056038,China;School of Water Conservancy and Hydroelectric Power,Hebei University of Engineering,Handan 056038,China)
机构地区:[1]河北工程大学信息与电气工程学院,河北邯郸056038 [2]河北省安防信息感知与处理重点实验室,河北邯郸056038 [3]河北工程大学水利水电学院,河北邯郸056038
出 处:《物联网学报》2024年第1期111-121,共11页Chinese Journal on Internet of Things
基 金:河北省研究生示范课程建设项目(No.KCJSX2022090,No.KCJSX2022091);河北省教育厅科学研究项目(No.QN-2020193);河北省省级研究生创新项目(No.CXZZBS2022024,No.CXZZSS2024098);邯郸市科学技术研究与发展计划项目(No.21422031288)。
摘 要:随着无线感知技术的发展,基于Wi-Fi的身份识别研究在人机交互和家居安防等领域备受关注。尽管基于Wi-Fi信号的身份识别已经取得了初步的成功,但是目前主要适用于用户独立行为场景,并发行为下的多用户身份识别仍然面临着一系列挑战,包括用户之间的相互干扰以及模型鲁棒性差等问题。因此,提出了一种并发行为下多用户身份识别系统Wiblack,其核心思想是训练一个多分支深度神经网络(Wiblack-Net)来提取每个单用户的独特特征。首先,利用主干网络提取多用户之间的共同特征;然后,为每个用户分配一个二分类器以此判断给定群体中是否存在目标用户,在此基础上基于并发行为实现多个用户身份识别。此外,将Wiblack与多个独立的二分类模型和单个多分类模型进行对比实验,对运行效率和系统性能进行分析。实验结果显示,在同时识别3个用户身份时,Wibalck平均准确率达到了92.97%,平均精确度为93.71%,平均召回率为93.24%,平均F1值为92.43%。With the advancement of wireless sensing technology,research on Wi-Fi-based identity recognition has garnered significant attention in fields such as human-computer interaction and home security.While identity recognition based on Wi-Fi signals has achieved initial success,it is currently primarily suitable for scenarios involving individual user behavior.Identity recognition for multiple users in concurrent behavior scenarios still faces a series of challenges,including issues related to mutual interference between users and poor model robustness.Therefore,a Wiblack system for recognizing multiple user identities in a concurrent distribution behavior scenario was proposed.The core idea was to train a multi-branch deep neural network(Wiblack-Net)to extract unique features for each individual user.Firstly,the common features among multiple users were extracted using the backbone network.Then,a binary classifier was assigned to each user to determine the presence of the target user within a given group,thereby achieving identity recognition for multiple users based on concurrent behavior.In addition,experiments comparing Wiblack with several independent binary classification models and a single multiclassification model were conducted to analyze operational efficiency.System performance experimental results demonstrate that when simultaneously identifying the identities of three users,Wibalck achieves an average accuracy of 92.97%,an average precision of 93.71%,an average recall of 93.24%,and an average F1 score of 92.43%.
关 键 词:Wi-Fi感知 信道状态信息 身份识别 多人识别 多分支深度神经网络
分 类 号:TN92[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222