检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:杨智翔 孙玉宝[1] 白志远 栾鸿康 Yang Zhixiang;Sun Yubao;Bai Zhiyuan;Luan Hongkang(School of Computer Science&School of Cyberspace Security,Nanjing University of Information Science&Technology,Nanjing 210044,China)
机构地区:[1]南京信息工程大学计算机学院网络空间安全学院,南京210044
出 处:《电子测量技术》2024年第1期150-158,共9页Electronic Measurement Technology
基 金:国家自然科学基金(62276139,U2001211)项目资助。
摘 要:现阶段Transformer模型的应用提升了高光谱图像去噪的性能,但原始Transformer模型对图像空间-光谱耦合关联性的利用仍存在不足;对空间特征的处理存在过于平滑,容易丢失小尺度结构的现象;同时在光谱维度上也过于关注全部通道特征,缺乏对不同光谱波段间差异性的利用;为了应对这些问题,本文提出了一种新的稀疏空谱Transformer模型,提升了对空谱耦合关联性的利用。在空间维度,引入局部增强模块增强空间特征细节,应对过平滑问题;同时在光谱维度上提出了Top-k稀疏自注意力机制,自适应选择前K个最相关的光谱通道特征进行特征交互,从而能够有效捕获空谱特征。最终通过稀疏空谱Transformer的层级残差连接实现高光谱图像的去噪。在ICVL数据集上分别对高斯噪声和复杂噪声进行去噪处理,峰值信噪比分别达到40.56 dB和40.19 dB,证明了本文提出的稀疏空谱Transformer模型优越的性能。The application of Transformer models has improved the performance of hyperspectral image denoising.However,the original Transformer model still falls short in effectively leveraging the spatial-spectral coupling in HSIs.It tends to excessively smooth spatial features,leading to the loss of small-scale structures.Moreover,it overly emphasizes all spectral channel features,neglecting the differences between different spectral bands.In order to solve these problems,this paper introduces a novel Sparse Spatial-Spectral Transformer model,enhancing the utilization of spatial-spectral coupling.In the spatial dimension,a local enhancement module is introduced to refine spatial feature details and deal with over-smoothing problem.Simultaneously,in the spectral dimension,a Top-k sparse self-attention mechanism is proposed,which adaptively selects the top-K most relevant spectral channel features for feature interaction,effectively capturing spatial-spectral characteristics.Ultimately,hyperspectral image denoising is achieved through hierarchical residual connections with the Sparse Spatial-Spectral Transformer.On the ICVL dataset,denoising performance for both Gaussian noise and complex noise attains peak signal-to-noise ratios of 40.56 dB and 40.19 dB,respectively,demonstrating the superior performance of the proposed Sparse Spatial-Spectral Transformer model in this paper.
关 键 词:高光谱图像去噪 空间-光谱联合特征 稀疏Transformer
分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.225