检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Olayemi Olasehinde
机构地区:[1]Department of Computer Science,Teesside University,Middlesbrough,TS13BX,UK [2]Department of Computer Science,University of Hundersfield,Hundersfield,HD13DH,UK
出 处:《Journal of Computer Science Research》2024年第1期43-53,共11页计算机科学研究(英文)
摘 要:Reducing neonatal mortality is a critical global health objective,especially in resource-constrained developing countries.This study employs machine learning(ML)techniques to predict fetal health status based on cardiotocography(CTG)examination findings,utilizing a dataset from the Kaggle repository due to the limited comprehensive healthcare data available in developing nations.Features such as baseline fetal heart rate,uterine contractions,and waveform characteristics were extracted using the RFE wrapper feature engineering technique and scaled with a standard scaler.Six ML models—Logistic Regression(LR),Decision Tree(DT),Random Forest(RF),Gradient Boosting(GB),Categorical Boosting(CB),and Extended Gradient Boosting(XGB)—are trained via cross-validation and evaluated using performance metrics.The developed models were trained via cross-validation and evaluated using ML performance metrics.Eight out of the 21 features selected by GB returned their maximum Matthews Correlation Coefficient(MCC)score of 0.6255,while CB,with 20 of the 21 features,returned the maximum and highest MCC score of 0.6321.The study demonstrated the ability of ML models to predict fetal health conditions from CTG exam results,facilitating early identification of high-risk pregnancies and enabling prompt treatment to prevent severe neonatal outcomes.
关 键 词:NEONATAL Mortality rate CARDIOTOCOGRAPHY Machine learning Foetus health PREDICTION Features engineering
分 类 号:TP1[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.219