检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈卓远 耿少娟[2,3,4,5] 刘帅鹏 刘稼昊 刘海龙 CHEN Zhuoyuan;GENG Shaojuan;LIU Shuaipeng;LIU Jiahao;LIU Hailong(Research Center of Fluid Machinery Engineering and Technology,Jiangsu University,Zhenjiang 212013,China;Advanced Gas Turbine Laboratory,Institute of Engineering Thermophysics,Chinese Academy of Sciences,Beijing 100190,China;Innovation Academy for Light-Duty Gas Turbine,Chinese Academy of Sciences,Beijing 100190,China;Key Laboratory of Advanced Energy and Power,Chinese Academy of Sciences,Beijing 100190,China;School of Engineering Science,University of Chinese Academy of Sciences,Beijing 100049,China;School of Energy and Power Engineering,Jiangsu University,Zhenjiang 212013,China)
机构地区:[1]江苏大学流体机械工程技术研究中心,江苏镇江212013 [2]中国科学院工程热物理研究所先进燃气轮机实验室,北京100190 [3]中国科学院轻型动力创新研究院,北京100190 [4]中国科学院先进能源动力重点实验室,北京100190 [5]中国科学院大学工程科学学院,北京100049 [6]江苏大学能源与动力工程学院,江苏镇江212013
出 处:《中国舰船研究》2024年第2期197-206,共10页Chinese Journal of Ship Research
基 金:国家科技重大专项资助项目(2017-Ⅱ-0007-0021,2017-Ⅱ-0006-0020)。
摘 要:[目的]旨在评估轮廓度误差对压气机气动性能的影响,并为叶片鲁棒性设计提供参考。[方法]建立单峰值轮廓度误差分布数学模型,采用数值模拟方法,研究压力面和吸力面不同轮廓度组合误差对超声速压气机平面叶栅气动性能的影响。[结果]结果表明:吸力面轮廓度误差分布是影响叶栅总压损失的关键因素,随着吸力面轮廓度峰值误差位置向下游移动,总压损失系数逐渐降低;压力面和吸力面误差分布对气流折转角和静压升系数的影响趋势相反。对较低来流马赫数的叶栅,吸力面误差对气流折转角和静压升均起主导作用;对较高来流马赫数的叶栅,压力面误差对气流折转角和静压升影响明显。激波位置和激波强度、激波后扩张通道的流道型线综合决定了叶片表面和叶栅流道内的流动状态,使得近吸力面侧流动损失增大,近压力面侧流动损失减小,其综合效果决定了叶栅损失、气流折转角和静压升的变化。[结论]结果对指导跨声速压气机设计、加工和超差审理均具有重要意义。[Objectives]This study seeks to evaluate the effects of profile variability on the aerodynamic performance of a compressor and provide guidance for the robust design of compressor blades.[Methods]A mathematical model of profile variability distribution with a single peak is established.The effects of the combined profile variability of the blade pressure and suction surface on the aerodynamic performance of two supersonic planar cascades are then investigated by numerical simulation.[Results]The results show that the profile variability distribution on the suction surface is the key factor behind cascade total pressure loss.The total pressure loss coefficient decreases gradually with the position of maximum profile variability on the suction surface moving downstream.The profile variability distribution on the blade pressure and suction surface influences the flow turning angle and static pressure rise coefficient with opposite trends.The profile variability on the suction surface plays a dominant role in the flow turning angle and static pressure rise of cascade with lower incoming Mach number;for cascade with higher incoming Mach number,the profile variability on the pressure surface has a significant impact on the flow turning angle and static pressure rise.The position and intensity of the shockwave and the end wall profile of the expansion channel after the shockwave comprehensively determine the flow state on the blade surface and in the cascade blade passage.The flow loss near the blade suction surface increases,the flow loss near the blade pressure surface decreases,and the compound effect determines the change of cascade loss,flow turning angle and static pressure rise.[Conclusions]The results of this study can provide guidance for the design,manufacture and manufacturing variability evaluation of transonic compressors.
关 键 词:轴流压气机 超声速叶栅 轮廓度误差 误差精度 误差分布 气动性能
分 类 号:U664.13[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7