Rainbow Pancyclicity in a Collection of Graphs Under the Dirac-type Condition  

在线阅读下载全文

作  者:Lu-yi LI Ping LI Xue-liang LI 

机构地区:[1]Center for Combinatorics and LPMC,Nankai University,Tianjin 300071,China [2]School of Mathematics and Statistics,Shaanxi Normal University,Xi’an 710062,China

出  处:《Acta Mathematicae Applicatae Sinica》2024年第2期269-274,共6页应用数学学报(英文版)

基  金:supported by the National Natural Science Foundation of China(No.12131013,No.12161141006 and No.12201375);the Tianjin Research Innovation Project for Postgraduate Students(No.2022BKY039).

摘  要:Let G={Gi:i∈[n]} be a collection of not necessarily distinct n-vertex graphs with the same vertex set V,where G can be seen as an edge-colored(multi)graph and each Gi is the set of edges with color i.A graph F on V is called rainbow if any two edges of F come from different Gis’.We say that G is rainbow pancyclic if there is a rainbow cycle Cℓof lengthℓin G for each integerℓ2[3,n].In 2020,Joos and Kim proved a rainbow version of Dirac’s theorem:Ifδ(Gi)≥2/n for each i∈[n],then there is a rainbow Hamiltonian cycle in G.In this paper,under the same condition,we show that G is rainbow pancyclic except that n is even and G consists of n copies of Kn/2,n/2.This result supports the famous meta-conjecture posed by Bondy.

关 键 词:RAINBOW Hamiltonian cycle rainbow pancyclic meta-conjecture 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象