检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jin-yan ZHU Yong CHEN
机构地区:[1]School of Mathematical Sciences,Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice,East China Normal University,Shanghai 200062,China [2]College of Mathematics and Systems Science,Shandong University of Science and Technology,Qingdao 266590,China
出 处:《Acta Mathematicae Applicatae Sinica》2024年第2期358-378,共21页应用数学学报(英文版)
基 金:supported by the National Natural Science Foundation of China(No.12175069 and No.12235007);Science and Technology Commission of Shanghai Municipality(No.21JC1402500 and No.22DZ2229014);Natural Science Foundation of Shanghai,China(No.23ZR1418100).
摘 要:The Gerdjikov-Ivanov(GI)hierarchy is derived via recursion operator,in this article,we mainly investigate the third-order flow GI equation.In the framework of the Riemann-Hilbert method,the soliton matrices of the third-order flow GI equation with simple zeros and elementary high-order zeros of Riemann-Hilbert problem are constructed through the standard dressing process.Taking advantage of this result,some properties and asymptotic analysis of single soliton solution and two soliton solution are discussed,and the simple elastic interaction of two soliton are proved.Compared with soliton solution of the classical second-order flow,we find that the higher-order dispersion term affects the propagation velocity,propagation direction and amplitude of the soliton.Finally,by means of a certain limit technique,the high-order soliton solution matrix for the third-order flow GI equation is derived.
关 键 词:Gerdjikov-Ivanov hierarchy third-order flow GI equation Riemann-Hilbert method high-order soliton
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.198