商业秘密侵权惩罚性赔偿倍数认定  

Determination of Punitive Compensation Multiple for Trade Secret Infringement

在线阅读下载全文

作  者:赵安朋 Zhao Anpeng(Postgraduate School,People’s Public Security University of China,Beijing 10010)

机构地区:[1]中国人民公安大学研究生院,北京100010

出  处:《西部学刊》2024年第7期96-99,共4页Journal of Western

摘  要:2019年修订的《反不正当竞争法》规定了惩罚性赔偿制度,由此带来了惩罚性赔偿数额的计算困难等问题,为了有效抑制商业秘密侵权案件的频发,也为了保护商业秘密主体的权益,需要进一步完善商业秘密侵权惩罚性赔偿数额的计算规则。我国商业秘密侵权惩罚性赔偿采用倍比的计算方式,需要结合“主观过错+客观情节”两个主要因素来确定赔偿倍数,而主要因素之下又分为数个不同的情节因素(即“二类因素”),而这些情节影响程度大小的判断标准比较模糊,因此容易出现同案不同判的现象,损害司法的公正性。针对这一难题,可采用赋值法,将主要因素和二类因素在法律规定的数值范围内进行赋值,以期达到计算结果更加客观公正的效果。Anti-Unfair Competition Law of the People’s Republic of China revised in 2019 stipulates a punitive compensation system,which brings difficulties in calculating the amount of punitive compensation.In order to effectively suppress the frequency of trade secret infringement cases,but also in order to protect the rights and interests of trade secret subjects,it is necessary to further improve the calculation rules for the amount of punitive compensation for trade secret infringement.The punitive compensation for trade secret infringement in China adopts a multiple ratio calculation method,which needs to be determined by combining the two main factors of“subjective fault+objective circumstances”to determine the compensation multiple,and under the main factors,there are several different plot factors(“second class factors”),and the judgment criteria for the degree of influence of these plot factors are relatively vague,so it is easy to have the phenomenon of different judgments in the same case,which damages the fairness of the judiciary.In response to this difficulty,the assignment method can be adopted,whereby the primary and secondary factors are assigned values within the range of values established by law,with a view to achieving a more objective and fairer result in the calculations.

关 键 词:侵犯商业秘密 惩罚性赔偿 计算倍数 

分 类 号:D923.4[政治法律—民商法学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象