检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:韩亚露 陈奕戈 邸会芳 林杰欢 王振兵 张扬 苏方远[1] 陈成猛[1] HAN Yalu;CHEN Yige;DI Huifang;LIN Jiehuan;WANG Zhenbing;ZHANG Yang;SU Fangyuan;CHEN Chengmeng(Institute of Coal Chemistry,Chinese Academy of Sciences,Taiyuan 030001,Shanxi,China;Huizhou Power Supply Bureau of Guangdong Power Grid Corporation,Huizhou 516000,Guangdong,China;University of Chinese Academy of Sciences,Beijing 100049,China)
机构地区:[1]中国科学院山西煤炭化学研究所,山西太原030001 [2]广东电网有限责任公司惠州供电局,广东惠州516000 [3]中国科学院大学,北京100049
出 处:《储能科学与技术》2024年第4期1338-1349,共12页Energy Storage Science and Technology
基 金:山西省重点研发计划项目(201903D121007);山西省重点研发计划项目(2021020660301013)。
摘 要:锂离子电池在长期服役时极易出现失效现象,包括内阻增大、容量衰减、析锂、产气等,其失效过程难以监测,容易导致锂离子电池的安全性、可靠性和使用寿命严重降低。通过研究搁置、长循环及浮充等不同服役工况下电池的失效原因,了解电池失效机制,可以快速监测电池的健康状态和服役寿命。本文对不同服役工况下电池失效的相关研究进行探讨,综述了在不同温度、电压和荷电状态等条件下服役时,锂离子电池内部正极、负极、隔膜和电解液的失效机理,着重介绍了电池在不同电压和温度下的搁置性能、搁置下的失效模型、长循环后正负极结构的变化、高温浮充后的失效机制及产气机理。同时也有针对性地提出了锂电负极材料、隔膜、电解液及正极材料等相关要素的优化方案。综合分析表明电极中活性锂的损失、活性物质的损失、颗粒的破裂、过渡金属的溶出、固体电解质界面膜(SEI)分解等都会引起锂离子电池的失效。减小颗粒粒径、加入电解液成膜添加剂以及优化隔膜的穿透性等,有望降低锂离子电池在长期服役过程中的失效速率,确保锂离子电池安全稳定运行。Lithium-ion batteries are susceptible to failure during extended use,manifesting as increased internal resistance,capacity decay,lithium plating,and gas generation,among other issues.The challenge of monitoring these failure processes can significantly compromise the safety,reliability,and lifespan of these batteries.Investigating the causes of battery failure under various service conditions,such as calendar aging,extensive cycling,and floating charge,is crucial for understanding the failure mechanisms and effectively monitoring the battery's health and lifespan.This paper reviews existing research on battery failure under different conditions and summarizes the failure mechanisms within the internal components of lithium-ion batteries-cathode,anode,separator,and electrolyte-under various temperature,voltage,and state of charge conditions.It highlights the effects of voltage and temperature on calendar aging,models of failure due to calendar aging,alterations in cathode and anode materials after prolonged cycling,failure mechanisms following high-temperature float charging,and the mechanisms of battery gas generation.Additionally,it proposes targeted optimization strategies for anode materials,separators,electrolytes,and cathode materials in lithium batteries.Comprehensive analysis indicates that failure in lithium-ion batteries can result from lithium loss in electrodes,active material loss,particle breakdown,transition metal dissolution,and solid electrolyte interface decomposition.By minimizing particle size,incorporating electrolyte film-forming additives,and enhancing separator permeability,the failure rate of lithium-ion batteries during long-term service can be reduced,ensuring their safe and stable operation.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.15.5.184