检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:施骞[1] 陈汉驰 SHI Qian;CHEN Han-chi(School of Economics and Management,Tongji University,Shanghai 200000,China)
出 处:《价值工程》2024年第11期1-4,共4页Value Engineering
基 金:国家自然科学基金项目:极端温度事件下城乡区域低碳人居环境系统脆弱性分析与韧性提升(T2261129476)。
摘 要:气候变化对城市的影响日益加剧,频发的极端温度事件导致城市电力系统供需不平衡问题凸显,精确的需求侧电力负荷预测成为提升电力系统适应性从而支持城市功能稳定性的关键。本文开发了一种适用于极端温度事件下负荷预测的组合模型,结合时间序列模型Prophet和机器学习模型XGBoost,有效表征极端温度影响下的电力负荷波动趋势。实验结果表明,相比传统单一模型,组合模型显著提高了极端温度事件下的电力负荷预测精度,在增强城市电力系统对气候变化适应性方面具有较强的有效性,从而为电力调度等电力系统应急管理工作提供了更可靠的支持。The impact of climate change on urban areas is intensifying,with frequent extreme temperature events leading to imbalances in the supply and demand of city electricity systems.Accurate demand-side electric load forecasting has become crucial for enhancing the adaptability of power systems and thus supporting the stability of urban functionalities.This paper develops a combined model suitable for load forecasting under extreme temperature conditions,integrating the time series model Prophet and the machine learning model XGBoost,to effectively characterize the fluctuating trends of electric load under the impact of extreme temperatures.Experimental results demonstrate that,compared to traditional single models,the combined model significantly improves the accuracy of electric load forecasting under extreme temperature events.This enhancement in prediction capability substantially aids in strengthening the adaptability of urban electricity systems to climate change,thereby offering more reliable support for emergency management tasks such as power dispatching in power systems.
关 键 词:极端温度 电力负荷预测 Prophet模型 XGBoost模型
分 类 号:P423[天文地球—大气科学及气象学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.170