On Leray's problem in an infinitely long pipe with the Navier-slip boundary condition  

在线阅读下载全文

作  者:Zijin Li Xinghong Pan Jiaqi Yang 

机构地区:[1]School of Mathematics and Statistics,Nanjing University of Information Science and Technology,Nanjing 210044,China [2]School of Mathematics and Key Laboratory of Ministry of Industry and Information Technology,Nanjing University of Aeronautics and Astronautics,Nanjing 211106,China [3]School of Mathematics and Statistics,Northwestern Polytechnical University,Xi'an 710129,China

出  处:《Science China Mathematics》2024年第4期819-854,共36页中国科学(数学)(英文版)

基  金:supported by Natural Science Foundation of Jiangsu Province(Grant No.BK20200803);National Natural Science Foundation of China(Grant No.12001285);supported by National Natural Science Foundation of China(Grant Nos.11801268 and 12031006);supported by National Natural Science Foundation of China(Grant No.12001429)。

摘  要:The original Leray’s problem concerns the well-posedness of weak solutions to the steady incompressible Navier-Stokes equations in a distorted pipe,which approach the Poiseuille flow subject to the no-slip boundary condition at spatial infinity.In this paper,the same problem with the Navier-slip boundary condition instead of the no-slip boundary condition,is addressed.Due to the complexity of the boundary condition,some new ideas,presented as follows,are introduced to handle the extra difficulties caused by boundary terms.First,the Poiseuille flow in the semi-infinite straight pipe with the Navier-slip boundary condition will be introduced,which will serve as the asymptotic profile of the solution to the generalized Leray’s problem at spatial infinity.Second,a solenoidal vector function defined in the whole pipe,satisfying the Navierslip boundary condition,having the designated flux and equalling the Poiseuille flow at a large distance,will be carefully constructed.This plays an important role in reformulating our problem.Third,the energy estimates depend on a combined L2-estimate of the gradient and the stress tensor of the velocity.

关 键 词:stationary Navier-Stokes system Navier-slip boundary condition Leray's problem 

分 类 号:O175[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象