检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:兰丽景 陈晓婷 毛洪孝 LAN Lijing;CHEN Xiaoting;MAO Hongxiao(Zhejiang Zhenbang Geographic Information Technology Co.,Ltd.,Quzhou 324000,China)
机构地区:[1]浙江振邦地理信息科技有限公司,浙江衢州324000
出 处:《测绘与空间地理信息》2024年第4期203-206,共4页Geomatics & Spatial Information Technology
摘 要:为了提高建筑物沉降变形预测精度,最大限度地减少监测数据中非变形噪声分量对预测结果的影响,本文在Elman神经网络模型的基础上引入奇异谱分析方法,构建新的SSA-Elman神经网络模型。首先利用SSA方法提取沉降监测数据中的趋势分量与周期分量,剔除噪声分量,提高监测数据信噪比;其次通过Elman神经网络模型分别对趋势分量、周期分量进行预测,得到对应分量预测结果;最后重构趋势分量与周期分量预测结果得到最终预测结果。通过实测建筑物沉降数据分别对Elman神经网络模型与SSA-Elman神经网络模型进行建模与预测,结果表明,SSA-Elman神经网络模型的预测精度更高,更适应长周期预测。In order to improve the prediction accuracy of building settlement deformation and minimize the impact of non deformation noise component in monitoring data on prediction results,in this paper,singular spectrum analysis is introduced based on Elman neural network model(SSA,single spectrum analysis)method to construct a new SSA-Elman neural network model.Firstly,the SSA method is used to extract the trend component and periodic component in the settlement monitoring data,eliminate the noise component and improve the signal-to-noise ratio of the monitoring data;secondly,the Elman neural network model is used to predict the trend component and periodic component respectively,and the corresponding component prediction results are obtained;finally the final prediction result is obtained from the prediction results of structural trend component and periodic component.Through the measured building settlement data,Elman neural network model and SSA-Elman neural network model are modeled and predicted respectively.The results show that SSA-Elman neural network model has higher prediction accuracy and is more suitable for long-term prediction.
关 键 词:Elman神经网络模型 奇异谱分析 建筑物 沉降预测 去噪
分 类 号:P25[天文地球—测绘科学与技术] TB22[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.228.10