Radar false alarm plots elimination based on multi-feature extraction and classification  

在线阅读下载全文

作  者:Cheng Yi Zhao Yan Yin Peiwen 

机构地区:[1]School of Control Science and Engineering,Tiangong University,Tianjin 300387,China [2]Tianjin Key Laboratory of Intelligent Control of Electrical Equipment,Tianjin 300387,China

出  处:《The Journal of China Universities of Posts and Telecommunications》2024年第1期83-92,共10页中国邮电高校学报(英文版)

摘  要:Caused by the environment clutter,the radar false alarm plots are unavoidable.Suppressing false alarm points has always been a key issue in Radar plots procession.In this paper,a radar false alarm plots elimination method based on multi-feature extraction and classification is proposed to effectively eliminate false alarm plots.Firstly,the density based spatial clustering of applications with noise(DBSCAN)algorithm is used to cluster the radar echo data processed by constant false-alarm rate(CFAR).The multi-features including the scale features,time domain features and transform domain features are extracted.Secondly,a feature evaluation method combining pearson correlation coefficient(PCC)and entropy weight method(EWM)is proposed to evaluate interrelation among features,effective feature combination sets are selected as inputs of the classifier.Finally,False alarm plots classified as clutters are eliminated.The experimental results show that proposed method can eliminate about 90%false alarm plots with less target loss rate.

关 键 词:radar plots elimination density based spatial clustering of applications with noise multi-feature extraction CLASSIFIER 

分 类 号:TN957.51[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象