检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:孙天阳 熊春雨 金上捷 王钰鑫 张敬飞 张鑫 Tian-Yang Sun;Chun-Yu Xiong;Shang-Jie Jin;Yu-Xin Wang;Jing-Fei Zhang;Xin Zhang(Key Laboratory of Cosmology and Astrophysics(Liaoning)&College of Sciences,Northeastern University,Shenyang 110819,China;Key Laboratory of Data Analytics and Optimization for Smart Industry(Ministry of Education),Northeastern University,Shenyang 110819,China;National Frontiers Science Center for Industrial Intelligence and Systems Optimization,Northeastern University,Shenyang 110819,China)
机构地区:[1]Key Laboratory of Cosmology and Astrophysics(Liaoning)&College of Sciences,Northeastern University,Shenyang 110819,China [2]Key Laboratory of Data Analytics and Optimization for Smart Industry(Ministry of Education),Northeastern University,Shenyang 110819,China [3]National Frontiers Science Center for Industrial Intelligence and Systems Optimization,Northeastern University,Shenyang 110819,China
出 处:《Chinese Physics C》2024年第4期240-251,共12页中国物理C(英文版)
基 金:the National SKA Program of China(2022SKA0110200,2022SKA0110203);the National Natural Science Foundation of China(11975072,11875102,11835009);the National 111 Project(B16009)。
摘 要:Glitches represent a category of non-Gaussian and transient noise that frequently intersects with gravitational wave(GW)signals,thereby exerting a notable impact on the processing of GW data.The inference of GW parameters,crucial for GW astronomy research,is particularly susceptible to such interference.In this study,we pioneer the utilization of a temporal and time-spectral fusion normalizing flow for likelihood-free inference of GW parameters,seamlessly integrating the high temporal resolution of the time domain with the frequency separation characteristics of both time and frequency domains.Remarkably,our findings indicate that the accuracy of this inference method is comparable to that of traditional non-glitch sampling techniques.Furthermore,our approach exhibits a greater efficiency,boasting processing times on the order of milliseconds.In conclusion,the application of a normalizing flow emerges as pivotal in handling GW signals affected by transient noises,offering a promising avenue for enhancing the field of GW astronomy research.
关 键 词:gravitational wave glitch non-Gaussian and transient noise normalizing flow machine learning likelihood-free parameter inference
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28