检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:范大鸣 FAN Daming(Bohai Shipbuilding Vocational College,Huludao 125100,China)
出 处:《电工技术》2024年第5期51-53,共3页Electric Engineering
摘 要:由于船用发电机组结构复杂,运行产生的数据较多且复杂性较高,给发电机的运行异常识别带来严峻挑战,因此研究基于多特征融合的船用发电机运行异常识别方法。采集并预处理船用发电机的运行数据,从运行数据中提取不同类型与维度的船用发电机运行状态特征,对提取到的多特征进行融合处理,采用SVM分类识别融合后的特征,得到船用发电机运行异常识别结果。实验结果表明,设计方法识别船用发电机运行异常的准确度为97.68%,验证了该方法的有效性与可行性。Complex structure of marine generator sets and large and complex data generated during operation pose a serious challenge for identifying abnormal operation of generators.Therefore a method for identifying abnormal operation of marine generators based on multi feature fusion was studied.The operation data of marine generators were collected and preprocessed.Different types and dimensions of marine generator operation status features were extracted from the operation data and fused.By using SVM classification,the fused features were identified,obtaining the abnormal operation recognition results of marine generators.Experimental results show that the designed method achieves an accuracy of 97.68% in identifying abnormal operation of marine generators,and thus is effective and feasible.
分 类 号:TM61[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.62