基于多特征融合的船用发电机运行异常识别研究  

Study on Abnormal Operation Identification of Marine Generators Based on Multi Feature Fusion

在线阅读下载全文

作  者:范大鸣 FAN Daming(Bohai Shipbuilding Vocational College,Huludao 125100,China)

机构地区:[1]渤海船舶职业学院,辽宁葫芦岛125100

出  处:《电工技术》2024年第5期51-53,共3页Electric Engineering

摘  要:由于船用发电机组结构复杂,运行产生的数据较多且复杂性较高,给发电机的运行异常识别带来严峻挑战,因此研究基于多特征融合的船用发电机运行异常识别方法。采集并预处理船用发电机的运行数据,从运行数据中提取不同类型与维度的船用发电机运行状态特征,对提取到的多特征进行融合处理,采用SVM分类识别融合后的特征,得到船用发电机运行异常识别结果。实验结果表明,设计方法识别船用发电机运行异常的准确度为97.68%,验证了该方法的有效性与可行性。Complex structure of marine generator sets and large and complex data generated during operation pose a serious challenge for identifying abnormal operation of generators.Therefore a method for identifying abnormal operation of marine generators based on multi feature fusion was studied.The operation data of marine generators were collected and preprocessed.Different types and dimensions of marine generator operation status features were extracted from the operation data and fused.By using SVM classification,the fused features were identified,obtaining the abnormal operation recognition results of marine generators.Experimental results show that the designed method achieves an accuracy of 97.68% in identifying abnormal operation of marine generators,and thus is effective and feasible.

关 键 词:多特征融合 船用发电机 运行异常 异常识别 

分 类 号:TM61[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象