数字电网边缘侧用电量数据缓存快速部署研究  被引量:1

Research on rapid deployment of power consumption data cache at the edge of digital grid

在线阅读下载全文

作  者:代奇迹 辛明勇 祝健杨 DAI Qiji;XIN Mingyong;ZHU Jianyang(Electric Power Research Institute of Guizhou Power Grid Co.,Ltd.,Guiyang 550002,China)

机构地区:[1]贵州电网有限责任公司电力科学研究院,贵州贵阳550002

出  处:《电子设计工程》2024年第8期77-81,共5页Electronic Design Engineering

摘  要:用电量数据缓存部署过程中受到存储空间限制,导致读写数据缓存不能满足相关要求,因此提出数字电网边缘侧用电量数据缓存快速部署方法。使用容器技术处理数字电网边缘侧用电量数据,使边缘侧用电量数据能够协同工作。在只考虑截止时间和能耗代价的情况下,通过动态子图匹配方式卸载读写任务,快速选择缓存位置。使用轮询调度方式选择最大队列报文进行轮询,维护用电量数据读写队列秩序。将轮询调度结果读写入队列,释放缓存空间,供其他数据分组入队使用,以此实现用电量数据缓存快速部署。实验结果表明,该方法只丢失了写入数据[12,1],出现了新数据[11,6],其余数据均与理想数据一致,说明该方法能够满足用电量数据部署要求。The power consumption data cache deployment process is limited by storage space,resulting in that the read and write data cache cannot meet the relevant requirements.Therefore,a rapid deployment method of power consumption data cache at the edge of digital grid is proposed.The container technology is used to process the edge side power consumption data of the digital grid,so that the edge side power consumption data can work together.Considering only the deadline and energy consumption cost,the read and write tasks are unloaded through dynamic subgraph matching,and the cache location is quickly selected.Use the polling scheduling method to select the maximum queue message for polling,and maintain the order of the power consumption data read and write queue.Read and write the polling scheduling results to the queue to free the cache space for other data packets to be used in the queue,so as to realize the rapid deployment of power consumption data cache.The experimental results show that the method only loses the written data [12,1],new data [11,6] appears,and the other data are consistent with the ideal data,indicating that the method can meet the requirements of power consumption data deployment.

关 键 词:数字电网 边缘侧 用电量数据 缓存快速部署 

分 类 号:TN929.5[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象