On the size generalizibility of graph neural networks for learning resource allocation  

在线阅读下载全文

作  者:Jiajun WU Chengjian SUN Chenyang YANG 

机构地区:[1]School of Electronics and Information Engineering,Beihang University,Beijing 100191,China

出  处:《Science China(Information Sciences)》2024年第4期235-250,共16页中国科学(信息科学)(英文版)

基  金:supported by National Natural Science Foundation of China(Grant Nos.61731002,62271024)。

摘  要:Size generalization is important for learning resource allocation policies in wireless systems with time-varying scales.If a neural network for learning a wireless policy is not generalizable to the size of its input,it has to be re-trained whenever the system scale changes,which hinders its practical use due to the unaffordable training costs.Graph neural networks(GNNs)have been shown with size generalization ability empirically when optimizing resource allocation.Yet,are GNNs naturally size generalizable?In this paper,we argue that GNNs are not always size generalizable for resource allocation.We find that the aggregation and activation functions of the GNNs for learning a class of wireless policies play a key role in their size generalization ability.We take the GNN with the mean aggregator,called mean-GNN,as an example to reveal a size generalization condition.To demonstrate how to satisfy the condition,we learn power and bandwidth allocation policies for ultra-reliable low-latency communications and show that selecting or pretraining the activation function in the output layer of mean-GNN can make the GNN size generalizable.Simulation results validate our analysis and evaluate the performance of the learned policies.

关 键 词:size generalization graph neural networks resource allocation permutation equivariance 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象