检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Jiajun WU Chengjian SUN Chenyang YANG
机构地区:[1]School of Electronics and Information Engineering,Beihang University,Beijing 100191,China
出 处:《Science China(Information Sciences)》2024年第4期235-250,共16页中国科学(信息科学)(英文版)
基 金:supported by National Natural Science Foundation of China(Grant Nos.61731002,62271024)。
摘 要:Size generalization is important for learning resource allocation policies in wireless systems with time-varying scales.If a neural network for learning a wireless policy is not generalizable to the size of its input,it has to be re-trained whenever the system scale changes,which hinders its practical use due to the unaffordable training costs.Graph neural networks(GNNs)have been shown with size generalization ability empirically when optimizing resource allocation.Yet,are GNNs naturally size generalizable?In this paper,we argue that GNNs are not always size generalizable for resource allocation.We find that the aggregation and activation functions of the GNNs for learning a class of wireless policies play a key role in their size generalization ability.We take the GNN with the mean aggregator,called mean-GNN,as an example to reveal a size generalization condition.To demonstrate how to satisfy the condition,we learn power and bandwidth allocation policies for ultra-reliable low-latency communications and show that selecting or pretraining the activation function in the output layer of mean-GNN can make the GNN size generalizable.Simulation results validate our analysis and evaluate the performance of the learned policies.
关 键 词:size generalization graph neural networks resource allocation permutation equivariance
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.7