检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈章仑 丁玉堂 陈洪丰 周王俊 王超逸 Chen Zhanglun;Ding Yutang;Chen Hongfeng;Zhou Wangjun;Wang Chaoyi(Wenzhou Zeya Reservoir Co.,Ltd.,Wenzhou Zhejiang 325000,China;Geotechnical Engineering Department,Nanjing Hydraulic Research Institute,Nanjing Jiangsu 210024,China)
机构地区:[1]温州市泽雅水库有限公司,浙江温州325000 [2]南京水利科学研究院岩土工程研究所,江苏南京210024
出 处:《山西建筑》2024年第8期187-189,195,共4页Shanxi Architecture
基 金:国家自然科学基金项目(U22A20602);南京水利科学研究院青年基金项目(Y316020)。
摘 要:堆石料流变效应引起的面板堆石坝工后变形持续积累,可能引起面板的压碎、开裂、错动或脱空,严重影响大坝的长效运行安全。基于深度学习(长短期记忆LSTM)技术,结合泽雅水库建库以来表面变形人工监测数据对大坝的长期变形行为进行了预测,同时针对沉降变形开展了统计模型预测与LSTM预测的对比分析。结果表明,经过数据清洗后LSTM方法具有良好的预测精度和稳定性,大坝表面沉降和水平位移在蓄水后35年~40年基本达到稳定,变形稳定时最大沉降量和水平位移分别为272.60 mm和178.92 mm。The continuous accumulation of post-construction deformations in concrete face rockfill dams,induced by the rheological effects of rockfill materials,may lead to panel crushing,cracking,dislocation,or detachment,severely jeopardizing the long-term operational safety of the dam.This paper utilizes deep learning(Long Short-Term Memory,LSTM)techniques,in conjunction with manual monitoring data of surface deformations collected since the construction of the Zeya Reservoir,to predict the long-term deformation behavior of the dam.A comparative analysis between the predictions of the statistical model and the LSTM model for settlement deformations is also presented.The results demonstrate that,following data cleansing,the LSTM method exhibits good prediction accuracy and stability.The surface settlement and horizontal displacement of the dam essentially stabilize 35~40 years after impoundment,with the maximum settlement and horizontal displacement recorded at deformation stabilization being 272.60 mm and 178.92 mm,respectively.
关 键 词:面板堆石坝 变形预测 深度学习 LSTM 泽雅水库
分 类 号:TU289[建筑科学—建筑设计及理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.142.151.216