基于香农熵代表性特征和投票机制的三维模型分类  

3D Model Classification Based on Shannon Entropy Representative Feature and Voting Mechanism

在线阅读下载全文

作  者:高雪瑶[1] 闫少康 张春祥[1] GAO Xueyao;YAN Shaokang;ZHANG Chunxiang(School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China)

机构地区:[1]哈尔滨理工大学计算机科学与技术学院,哈尔滨150080

出  处:《电子与信息学报》2024年第4期1438-1447,共10页Journal of Electronics & Information Technology

基  金:国家自然科学基金(61502124,60903082);中国博士后科学基金(2014M560249);黑龙江省自然科学基金(LH2022F031,LH2022F030,F2015041,F201420)。

摘  要:目前基于视图的3维模型分类方法存在单视图视觉信息不充分、多视图信息冗余的问题,且同等对待所有视图会忽略不同投影视角之间的差异性。针对上述问题,该文提出一种基于香农熵代表性特征和投票机制的3维模型分类方法。首先,通过在3维模型周围均匀设置多个视角组来获取表征模型的多组视图集。为了有效提取视图深层特征,在特征提取网络中引入通道注意力机制;然后,针对Softmax函数输出的视图判别性特征,使用香农熵来选择代表性特征,从而避免多视图特征冗余;最后,基于多个视角组的代表性特征利用投票机制来完成3维模型分类。实验表明:该方法在3维模型数据集ModelNet10上的分类准确率达到96.48%,分类性能突出。At present,view-based 3D model classification has the problems of insufficient visual information for single view and redundant information for multiple views,and treating all views equally will ignore the differences between different projection angles.To solve the above problems,a 3D model classification method based on Shannon entropy representative feature and voting mechanism is proposed.Firstly,multiple angle groups are set uniformly around 3D model,and multiple view sets representing the model are obtained.In order to extract effectively deep features from view,channel attention mechanism is introduced into the feature extraction network.Secondly,based on view discriminative features output from Softmax function,Shannon entropy is used to select representative feature for avoiding redundant feature of multiple views.Finally,based on representative features from multiple angle groups,voting mechanism is used to classify 3D model.Experiments show that the classification accuracy of the proposed method on 3D model dataset ModelNet10 reaches 96.48%,and classification performance is outstanding.

关 键 词:3维模型分类 注意力机制 香农熵代表性特征 投票机制 

分 类 号:TN911.7[电子电信—通信与信息系统] TP391.7[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象