具有积分边界条件的耦合φ-Hilfer分数阶微分系统解的存在性  

Existence of solutions of coupled φ-Hilfer fractional differential systems with integral boundary conditions

在线阅读下载全文

作  者:张蓓[1] 司换敏 江卫华[1] 郭春静 陈坤 ZHANG Bei;SI Huanmin;JIANG Weihua;GUO Chunjing;CHEN Kun(School of Sciences,Hebei University of Science and Technology,Shijiazhuang,Hebei 050018,China;Office of Academic Affairs,Shijiazhuang People's Medical College,Shijiazhuang,Hebei 050091,China)

机构地区:[1]河北科技大学理学院,河北石家庄050018 [2]石家庄人民医学高等专科学校教务处,河北石家庄050091

出  处:《河北科技大学学报》2024年第2期159-167,共9页Journal of Hebei University of Science and Technology

基  金:国家自然科学基金(11775169);河北省自然科学基金(A2018208171)。

摘  要:为了拓展分数阶微分方程系统的相关理论,研究了一类具有积分边界条件的耦合φ-Hilfer分数阶微分系统。首先,将具有积分边界条件的耦合φ-Hilfer分数阶微分系统转化为积分系统;其次,定义合适的Banach乘积空间和范数,构造合适的积分算子,分别运用压缩映像原理和Kransnoselskii不动点定理得出耦合φ-Hilfer分数阶微分系统在积分边界条件下解的存在性结果;最后,通过列举实例说明所得结论的正确性。研究表明,积分边界条件下的耦合φ-Hilfer分数阶微分系统的解具有存在性。研究结论丰富了耦合分数阶微分系统理论可解性的相关理论,可为深入研究分数阶微分方程提供一定的理论参考。In order to expand the relevant theory of fractional differential equation systems,a class of coupled φ-Hilfer fractional differential systems with integral boundary conditions was studied.Firstly,the coupled φ-Hilfer fractional differential system with integral boundary conditions was transformed into an integral system.Secondly,the appropriate Banach product space and norm were defined,the appropriate integral operator was constructed,and the existence result of the solution of the coupled φ-Hilfer fractional differential system under the integral boundary condition was given by using the compressed image principle and Kransnoselskii's fixed point theorem,respectively.Finally,examples were given to illustrate the correctness of the conclusions obtained.The results show that the solutions of the coupled φ-Hilfer fractional differential system under the integral boundary condition exist.The existence of solutions of coupled φ-Hilfer fractional differential systems is studied for the first time by using the compressed image principle and Kransnoselskii's fixed point theorem,respectively,and some innovative new results are obtained.In addition,the research conclusion enriches the relevant theories of the theoretical solvability of coupled fractional differential systems,and provides certain theoretical reference value for the further study of fractional order differential equations.

关 键 词:解析理论 φ-Hilfer分数阶导数 耦合系统 压缩影像原理 Kransnoselskii不动点定理 解的存在性 

分 类 号:O175.8[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象