检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张航 陈默涵 ZHANG Hang;CHEN Mo-han(HEDPS,Center for Applied Physics and Technology,College of Engineering,Peking University,Beijing 100871,China;School of Physics,Peking University,Beijing 100871,China;AI for Science Institute,Beijing 100080,China)
机构地区:[1]高能量密度物理数值模拟教育部重点实验室,北京大学应用物理与技术研究中心,北京大学工学院,北京100871 [2]北京大学物理学院,北京100871 [3]北京科学智能研究院,北京100080
出 处:《物理学进展》2024年第2期49-72,共24页Progress In Physics
基 金:冲击波物理与爆轰物理全国重点实验室稳定支持科研项目JCKYS2022212010;国家自然科学基金委(项目号12122401,12074007,12135002);北京大学新工科交叉青年专项对本项目的支持
摘 要:温稠密物质(Warm Dense Matter,WDM)是介于凝聚态物质和等离子体之间的一种过渡状态的物质,也是行星物理、实验室天体物理和惯性约束聚变等高能量密度物理领域的前沿科研方向。温稠密物质的量子效应显著,具有部分电离、强耦合、电子简并和热效应等重要的物理性质,因此需要采用量子力学的基础理论来描述。近年来,基于量子力学的第一性原理计算模拟方法发展迅速,逐渐成为了深入理解温稠密物质性质的有效工具。一方面,直接将凝聚态物理和材料科学中广泛适用的第一性原理方法应用于温稠密物质面临着巨大的挑战,特别是在宽温区和极端高压等极端条件下,需要不断改进现有的第一性原理算法和软件。另一方面,基于机器学习的分子动力学方法发展迅速,也给温稠密物质模拟带来了新的工具。在这篇综述中,我们首先回顾了适用于温稠密物质模拟的传统第一性原理方法,包括Kohn-Sham密度泛函理论方法和无轨道密度泛函理论方法。其次,我们介绍了近年来发展的新方法和软件,例如改进的第一性原理方法和随机密度泛函理论方法,后者已在国产开源密度泛函理论软件原子算筹(ABACUS)中实现。以上新方法可以显著提升温稠密物质的计算规模和效率,从而提升温稠密物质的结构、动力学和输运系数等性质的计算精度。Warm Dense Matter(WDM)represents a transitional state of matter situated between condensed matter and plasma,emerging as a cutting-edge research direction within the realms of planetary physics,laboratory astrophysics,and inertial confinement fusion in the field of high-energy density physics.WDM is characterized by significant quantum effects,partial ionization,strong coupling,electron degeneracy,and thermal effects,necessitating a description based on fundamental quantum mechanical theories.In recent years,simulations and calcula-tions based on quantum mechanics’first principles have rapidly advanced,increasingly becom-ing an effective tool for a deeper understanding of WDM properties.On one hand,applying First Principles widely used in condensed matter physics and materials science to WDM poses considerable challenges,especially under extreme conditions such as broad temperature ranges and high pressures,which require continuous improvements to existing first-principle algo-rithms and software.On the other hand,the rapid development of machine learning-based molecular dynamics methods offers new tools for simulating WDM.In this review,we ini-tially revisit traditional first principles applicable to WDM simulations,including Kohn-Sham Density Functional Theory and Orbital-free Density Functional Theory.Subsequently,we introduce newly developed methods and software,such as Extended First Principles Molecular Dynamics and Stochastic Density Functional Theory,the latter of which has been implemented in the domestically developed open-source density functional theory software,Atomic-orbital Based Ab-initio Computation at UStc(ABACUS).These innovative approaches significantly boost the computational scale and efficiency of WDM studies,thereby elevating the precision of structural,dynamical,and transport coefficient calculations related to WDM.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222