检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:黄韩宇 蒋林[1,2] 余正强 汤勃 Huang Hanyu;Jiang Lin;Yu Zhengqiang;Tang Bo(Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education,Wuhan University of Science and Technology,Wuhan Hubei 430081;Institute of Robotics and Intelligent System,Wuhan University of Science and Technology,Wuhan Hubei 430081)
机构地区:[1]武汉科技大学冶金装备及其控制教育部重点实验室,湖北武汉430081 [2]武汉科技大学机器人与智能系统研究院,湖北武汉430081
出 处:《中国仪器仪表》2024年第4期60-65,共6页China Instrumentation
基 金:国家重点研发计划项目(2019YFB1310000);国家自然科学基金(51874217)。
摘 要:在室内结构相似或含有多几何结构重复区域的环境中,基于激光的全局定位方法很难实现可靠且高效的结果。针对该问题,本文提出一种基于优化的视觉辅助激光定位的方法,仅利用单帧图像信息和激光(LiDAR)信息进行重定位。首先,利用视觉位置识别和BA(Bundle Adjustment)优化来估计机器人的初始姿态。然后,利用视觉初始位姿缩小搜索空间,提高约束计算速度,并将初始估计和激光约束结合验证。最后通过稀疏姿态优化方法构建目标函数,求解全局位姿。实验结果表明,提出的全局定位方法相比单一激光全局定位具有更高的成功率,并且全局定位时间在室内小场景环境和长走廊环境分别减少了56.81%和89.43%,满足了实时性和鲁棒性要求。In indoor environments with similar indoor structures or repetitive geometric regions,achieving reliable and efficient results using laser-based global localization methods can be challenging.To address this issue,we propose an optimization-based visual-assisted laser localization method that relies solely on single-frame image information and LiDAR data for global localization.Firstly,we employ visual pose estimation and Bundle Adjustment(BA)optimization to estimate the robot's initial pose.Subsequently,we utilize the initial visual pose to narrow down the search space,improving constraint computation speed.We then integrate the initial estimation with laser constraints to validate the pose.Finally,we construct an objective function using sparse pose optimization methods to solve for the global pose.Experimental results demonstrate that the proposed global localization method outperforms single-laser global localization in terms of success rate.Moreover,the global localization time is reduced by 56.81% in small indoor scenes and 89.43% in long corridor environments,meeting real-time and robustness requirements.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.196.112