检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Xianghong Cao Xinyu Wang Xin Geng Donghui Wu Houru An
出 处:《Computer Modeling in Engineering & Sciences》2024年第7期385-408,共24页工程与科学中的计算机建模(英文)
基 金:funded by the Henan Provincial Science and Technology Research Project(222102210086);the Starry Sky Creative Space Innovation Space Innovation Incubation Project of Zhengzhou University of Light Industry(2023ZCKJ211).
摘 要:This study proposes a pose estimation-convolutional neural network-bidirectional gated recurrent unit(PSECNN-BiGRU)fusion model for human posture recognition to address low accuracy issues in abnormal posture recognition due to the loss of some feature information and the deterioration of comprehensive performance in model detection in complex home environments.Firstly,the deep convolutional network is integrated with the Mediapipe framework to extract high-precision,multi-dimensional information from the key points of the human skeleton,thereby obtaining a human posture feature set.Thereafter,a double-layer BiGRU algorithm is utilized to extract multi-layer,bidirectional temporal features from the human posture feature set,and a CNN network with an exponential linear unit(ELU)activation function is adopted to perform deep convolution of the feature map to extract the spatial feature of the human posture.Furthermore,a squeeze and excitation networks(SENet)module is introduced to adaptively learn the importance weights of each channel,enhancing the network’s focus on important features.Finally,comparative experiments are performed on available datasets,including the public human activity recognition using smartphone dataset(UCIHAR),the public human activity recognition 70 plus dataset(HAR70PLUS),and the independently developed home abnormal behavior recognition dataset(HABRD)created by the authors’team.The results show that the average accuracy of the proposed PSE-CNN-BiGRU fusion model for human posture recognition is 99.56%,89.42%,and 98.90%,respectively,which are 5.24%,5.83%,and 3.19%higher than the average accuracy of the five models proposed in the comparative literature,including CNN,GRU,and others.The F1-score for abnormal posture recognition reaches 98.84%(heartache),97.18%(fall),99.6%(bellyache),and 98.27%(climbing)on the self-builtHABRDdataset,thus verifying the effectiveness,generalization,and robustness of the proposed model in enhancing human posture recognition.
关 键 词:Posture recognition mediapipe BiGRU CNN ELU ATTENTION
分 类 号:TP183[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.28.3