检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:乔金友[1,2] 闫思梦 孙健 荆玉冰[1,2] 陈海涛 Qiao Jinyou;Yan Simeng;Sun Jian;Jing Yubing;Chen Haitao(College of Engineering,Northeast Agricultural University,Harbin,150030,China;Heilongjiang Major Crop Production Mechanization Material Technology Innovation Center,Harbin,150000,China)
机构地区:[1]东北农业大学工程学院,哈尔滨市150030 [2]黑龙江省主要农作物生产机械化材料化技术创新中心,哈尔滨市150000
出 处:《中国农机化学报》2024年第4期258-265,共8页Journal of Chinese Agricultural Mechanization
基 金:“十四五”国家重点研发计划子课题(2021YFD2000405-2);国家大豆产业技术体系专项资金项目(CARS-04-PS27)。
摘 要:玉米、水稻等作物收后秸秆处理一直是农业生产中亟待解决的问题,机械化秸秆还田是作物收后秸秆处理的重要手段,也是保护黑土资源的重要措施。结合相关文献,提出基于协整性检验的单一预测模型选择和基于误差指标最小的最优组合预测模型选择关键环节;运用协整性检验方法确定二次函数模型、ARIMA模型、H-W无季节模型作为秸秆还田机械化程度预测的单一模型;依据误差绝对值和最小法、Shapley法和基于Theil不等系数IOWAO法构建三种组合预测模型,采用误差平方和(SSE)、平均绝对误差(MAE)、均方误差(MSE)、平均绝对百分比误差(MAPE)、均方百分比误差(MSPE)五个误差指标比较模型精度,确定采用基于Theil不等系数IOWAO的组合模型为最优预测作物秸秆还田机械化程度模型。结果表明,2022-2026年黑龙江省秸秆还田机械化程度将稳步提升,平均每年增加4.52%,2026年将达到74.19%,比2021年提升22.62%;2022年以后,黑龙江省秸秆还田机械化程度将进入快速发展期。为制定和实施机械化秸秆处理政策提供理论依据,为保护和恢复黑土资源生产能力提供重要支撑。The treatment of corn and rice straw after harvest has always been an urgent problem to be solved in agricultural production.Mechanized straw returning to the field has been an important means of straw treatment of crops after harvest and also an important measure to protect black soil resources.Combined with relevant literature,the key links was single prediction model selection based on cointegration test and optimal combination prediction model selection based on minimum error index was proposed.The quadratic function model,ARIMA model and H-W non-seasonal model were selected as the single forecasting model for the mechanization degree of straw returning to the field by using the method of cointegration test.The combined forecasting model was built according to the minimized sum of the absolute error value method,Shapley method and Theil inequality coefficient and IOWAO model method.The forecasting accuracy of the combined models was compared by SSE,MAE,MSE,MAPE and MSPE.It was proved that Theil inequality coefficient and IOWAO combined model was the better model to forecast the mechanization degree of crop straw returning to the field.The results show that the mechanization degree of straw returning to field in Heilongjiang Province will be steadily improved from 2022 to 2026.The average annual increase will be 4.52%,which will reach 74.19%in 2026,an increase of 22.62%over 2021.After 2022 the mechanization degree of straw return in Heilongjiang Province will enter a rapid development period.The combined prediction results provide theoretical basis for determining and implementing mechanized straw treatment measures and have practical significance for protecting and restoring the productive capacity of black soil resources.
关 键 词:黑龙江省 秸秆还田机械化 黑土资源保护 变权重组合预测
分 类 号:S23-9[农业科学—农业机械化工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.171