基于中心节点的动态扩散社团划分算法  

Dynamic Diffusion Community Detection Algorithm Based on Central Node

在线阅读下载全文

作  者:卓新建[1,2] 谭雯泽 ZHUO Xinjian;TAN Wenze(School of Science,Beijing University of Posts and Telecommunications,Beijing 100876,China;Key Laboratory of Mathematics and Information Networks(Beijing University of Posts and Telecommunications),Ministry of Education,Beijing 100876,China)

机构地区:[1]北京邮电大学理学院,北京100876 [2]数学与信息网络教育部重点实验室(北京邮电大学),北京100876

出  处:《北京邮电大学学报》2024年第1期58-64,共7页Journal of Beijing University of Posts and Telecommunications

基  金:国家自然科学基金项目(61973042,62272054);国家社会科学基金项目(20&ZD013)。

摘  要:社团划分是复杂网络研究中的关键研究方向之一。现有的绝大多数工作都聚焦于网络拓扑而忽略网络上的动态过程,针对此问题提出一种基于中心节点的动态扩散社团划分算法。首先,提出基于非回溯游走路径数的节点中心性评价指标;其次,为了对网络上发生的多尺度社交互动模式进行建模,找到一种新的边隶属度向量表示节点的社团归属情况,将中心节点与社团划分联系在一起,用动态系统表示社团成员的动态分配过程进而完成重叠社团划分;最后,为验证所提算法的有效性,将其应用于真实网络和人工网络,实验结果表明,所提算法在划分精度上有很大的优势。Community detection is one of the key research directions in the study of complex networks.Most of the existing work focuses on network topology but ignores the dynamic process on the network.Thus,a dynamic diffusion community detection algorithm based on central node is proposed.First,a node centrality measure metric is proposed based on the number of non-backtracking path.Then,in order to model the multi-scale social interaction mode occurring on the network,a new edge membership vector is designed to represent the community belonging of nodes which links the central node with community detection.Besides,a dynamic system is designed to represent the dynamic distribution process of community members to complete overlapping community detection.Finally,the proposed algorithm is applied to real networks and artificial networks to verify its effectiveness.The experimental results show the proposed algorithm has great advantages in detection accuracy.

关 键 词:复杂网络 社团划分 重叠结构 非回溯矩阵 隶属度向量 

分 类 号:TP301[自动化与计算机技术—计算机系统结构]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象