论自动化行政决定的说明义务  被引量:4

On the Explanatory Duty of Automated Administrative Decisions

在线阅读下载全文

作  者:赵鹏 张硕 ZHAO Peng;ZHANG Shuo(School of Law-based Government,China University of Political Science and Law,Beijing 100088,China;School of Law,China University of Political Science and Law,Bejing 102249,China)

机构地区:[1]中国政法大学法治政府研究院,北京100088 [2]中国政法大学法学院,北京102249

出  处:《山西大学学报(哲学社会科学版)》2024年第2期27-37,共11页Journal of Shanxi University(Philosophy and Social Science Edition)

摘  要:近年来,自动化行政决定方兴未艾。算法与行政权力的耦合实现了对传统人工决策的赋能,但也带来显著的黑箱效应,产生了对程序理性的冲击与侵蚀。对此,应当清楚认识自动化行政决定在算法治理与行政法治下的双重定位,串联起行政法与数据法中的既有制度规范,在行政过程论的视角下明确行政机关对自动化行政决定的说明义务。同时,须考虑说明义务在不同阶段的需求、成本,以及涉及的利益冲突,在具体构建中设计由面向公众的事前系统性说明和针对相对人与利益相关方在事中的具体个案说明组成的双层说明义务架构,实现自动化决定的理由之治,全面保障公民算法权利。In recent years, automated administrative decisions have been on the rise. The coupling of algorithmic power and administrative power enables traditional human decision-making, but at the same time, it also brings a significant black box effect, resulting in the impact on and erosion of procedural rationality. In this regard, we should clearly understand the dual positioning of automated administrative decision under algorithmic governance and administrative rule of law, connect the existing system norms in administrative law and data law, and clarify the explanatory duty of automated administrative decisions from the perspective of administrative process theory. At the same time, it is necessary to consider the needs, costs, and conflicts of interests involved in the different stages of the explanation, and design a double-layer explanatory duty structure, which consists of the prior systematic explanation for the public and the specific case explanation for the counterpart and the stakeholders in the matter, so as to realize the rule of reasons for automated decisions and comprehensively protect the algorithmic rights of citizens.

关 键 词:自动化行政决定 算法黑箱 说明义务 算法公开 算法解释 

分 类 号:D922.1[政治法律—宪法学与行政法学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象