Topological Stability and Entropy for Certain Set-valued Maps  

在线阅读下载全文

作  者:Yu ZHANG Yu Jun ZHU 

机构地区:[1]School of Mathematical Sciences,Xiamen University,Xiamen 361005,P.R.China

出  处:《Acta Mathematica Sinica,English Series》2024年第4期962-984,共23页数学学报(英文版)

基  金:Supported by NSFC(Grant Nos.11771118,12171400)。

摘  要:In this paper,the dynamics(including shadowing property,expansiveness,topological stability and entropy)of several types of upper semi-continuous set-valued maps are mainly considered from differentiable dynamical systems points of view.It is shown that(1)if f is a hyperbolic endomorphism then for eachε>0 there exists a C^(1)-neighborhood U of f such that the induced set-valued map F_(f,U)has theε-shadowing property,and moreover,if f is an expanding endomorphism then there exists a C^(1)-neighborhood U of f such that the induced set-valued map F_(f,U)has the Lipschitz shadowing property;(2)when a set-valued map F is generated by finite expanding endomorphisms,it has the shadowing property,and moreover,if the collection of the generators has no coincidence point then F is expansive and hence is topologically stable;(3)if f is an expanding endomorphism then for eachε>0 there exists a C^(1)-neighborhood U of f such that h(F_(f,U,ε))=h(f);(4)when F is generated by finite expanding endomorphisms with no coincidence point,the entropy formula of F is given.Furthermore,the dynamics of the set-valued maps based on discontinuous maps on the interval are also considered.

关 键 词:Set-valued map orbit space hyperbolic endomorphism perturbation SHADOWING EXPANSIVENESS topological stability ENTROPY 

分 类 号:O19[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象