Tanaka Formula and Local Time for a Class of Interacting Branching Measure-valued Diffusions  

在线阅读下载全文

作  者:Donald A.DAWSON Jean VAILLANCOURT Hao WANG 

机构地区:[1]School of Mathematics and Statistics,Carleton University,Ottawa,Canada [2]Department of Decision Sciences,HEC,Montreal,Canada [3]Department of Mathematics,University of Oregon,Eugene,USA

出  处:《Acta Mathematica Sinica,English Series》2024年第4期1059-1098,共40页数学学报(英文版)

基  金:Partial funding in support of this work was provided by the Natural Sciences and Engineering Research Council of Canada(NSERC);the Department of Mathematics at the University of Oregon。

摘  要:We construct superprocesses with dependent spatial motion(SDSMs)in Euclidean spaces R^(d)with d≥1 and show that,even when they start at some unbounded initial positive Radon measure such as Lebesgue measure on R^(d),their local times exist when d≤3.A Tanaka formula of the local time is also derived.

关 键 词:Measure-valued diffusions stochastic partial differential equations SUPERPROCESSES branching processes local time Tanaka formula 

分 类 号:O174.12[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象