Some Convergence Properties for Weighted Sums of Martingale Difference Random Vectors  

在线阅读下载全文

作  者:Yi WU Xue Jun WANG 

机构地区:[1]School of Big Data and Artificial Intelligence,Chizhou University,Chizhou 247000,P.R.China [2]School of Big Data and Statistics,Anhui University,Hefei 230601,P.R.China

出  处:《Acta Mathematica Sinica,English Series》2024年第4期1127-1142,共16页数学学报(英文版)

基  金:Supported by the Outstanding Youth Research Project of Anhui Colleges(Grant No.2022AH030156)。

摘  要:Let{X_(ni),F_(ni);1≤i≤n,n≥1}be an array of R^(d)martingale difference random vectors and{A_(ni),1≤i≤n,n≥1}be an array of m×d matrices of real numbers.In this paper,the Marcinkiewicz-Zygmund type weak law of large numbers for maximal weighted sums of martingale difference random vectors is obtained with not necessarily finite p-th(1<p<2)moments.Moreover,the complete convergence and strong law of large numbers are established under some mild conditions.An application to multivariate simple linear regression model is also provided.

关 键 词:Martingale difference random vectors weighted sums Marcinkiewicz–Zygmund type weak law of large numbers complete convergence strong law of large numbers multivariate simple linear regression model 

分 类 号:O211.4[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象