检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yi WU Xue Jun WANG
机构地区:[1]School of Big Data and Artificial Intelligence,Chizhou University,Chizhou 247000,P.R.China [2]School of Big Data and Statistics,Anhui University,Hefei 230601,P.R.China
出 处:《Acta Mathematica Sinica,English Series》2024年第4期1127-1142,共16页数学学报(英文版)
基 金:Supported by the Outstanding Youth Research Project of Anhui Colleges(Grant No.2022AH030156)。
摘 要:Let{X_(ni),F_(ni);1≤i≤n,n≥1}be an array of R^(d)martingale difference random vectors and{A_(ni),1≤i≤n,n≥1}be an array of m×d matrices of real numbers.In this paper,the Marcinkiewicz-Zygmund type weak law of large numbers for maximal weighted sums of martingale difference random vectors is obtained with not necessarily finite p-th(1<p<2)moments.Moreover,the complete convergence and strong law of large numbers are established under some mild conditions.An application to multivariate simple linear regression model is also provided.
关 键 词:Martingale difference random vectors weighted sums Marcinkiewicz–Zygmund type weak law of large numbers complete convergence strong law of large numbers multivariate simple linear regression model
分 类 号:O211.4[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.16.160.142