An inverse method for characterization of dynamic response of 2D structures under stochastic conditions  

在线阅读下载全文

作  者:Xuefeng LI Abdelmalek ZINE Mohamed ICHCHOU Noureddine BOUHADDI Pascal FOSSAT 

机构地区:[1]Laboratory of Tribology and Systems Dynamic,Central School of Lyon,Ecully 69134,France [2]Institut Camille Jordan,Central School of Lyon,Ecully 69134,France [3]Department of Applied Mechanics,University of Burgundy Franche-Comté,Besancon 25000,France

出  处:《Chinese Journal of Aeronautics》2024年第3期440-455,共16页中国航空学报(英文版)

基  金:supported by the Lyon Acoustics Center of Lyon University,France;funded by the China Scholarship Council(CSC)。

摘  要:The reliable estimation of the wavenumber space(k-space)of the plates remains a longterm concern for acoustic modeling and structural dynamic behavior characterization.Most current analyses of wavenumber identification methods are based on the deterministic hypothesis.To this end,an inverse method is proposed for identifying wave propagation characteristics of twodimensional structures under stochastic conditions,such as wavenumber space,dispersion curves,and band gaps.The proposed method is developed based on an algebraic identification scheme in the polar coordinate system framework,thus named Algebraic K-Space Identification(AKSI)technique.Additionally,a model order estimation strategy and a wavenumber filter are proposed to ensure that AKSI is successfully applied.The main benefit of AKSI is that it is a reliable and fast method under four stochastic conditions:(A)High level of signal noise;(B)Small perturbation caused by uncertainties in measurement points’coordinates;(C)Non-periodic sampling;(D)Unknown structural periodicity.To validate the proposed method,we numerically benchmark AKSI and three other inverse methods to extract dispersion curves on three plates under stochastic conditions.One experiment is then performed on an isotropic steel plate.These investigations demonstrate that AKSI is a good in-situ k-space estimator under stochastic conditions.

关 键 词:Inverse method Dispersion relation Wavenumber space Periodic plates Stochastic conditions Wave propagation characterization 

分 类 号:TB533.2[理学—物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象