检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yuguo Chen Shuanhu Qi Ying Jiang
机构地区:[1]School of Chemistry,Beihang University,Beijing 100191,China
出 处:《Chinese Journal of Polymer Science》2024年第3期388-399,I0009,共13页高分子科学(英文版)
基 金:financially supported by the National Natural Science Foundation of China (No.22173002);the Fundamental Research Funds for the Central Universities (No.YWF-22-K-101);the Fundamental Research Funds for the Central Universities from Beihang University。
摘 要:We study the effect of chain rigidity on tailoring the nanoparticle locations for neutral and selective particles embedded in the lamellar morphology formed by semiflexible diblock copolymer chains using self-consistent field calculations. The nanoparticles are modeled through a cavity function, and the semiflexible chains are represented by the continuous Kratsky-Porod chain model. In general situation, the nanoparticles prefer to stay at the interface in order to reduce the interface areas and thus the system free energy. However, the particle distribution at the domain center is subtle, and the underlying physics is intrinsically different depending on the polymer flexibility. In the case of flexible chains, the entropy just contributes a constant shift to the free energy when the nanoparticles move around the domain center indicating that the local metastable state if appears at the domain center is wholly attributed to the local minimum in the enthalpy. If the polymers are rigid, the variation of the particle distribution at the domain center has a close relation with the polymer rigidity and nanoparticle size. In the case of strongly rigid polymers with small nanoparticles, a nearly uniform particle distribution at the domain center is observed, while in other cases, a local enhancement of particle distribution there is found. In contrast to the case of flexible chains, further analysis reveals the crucial role of entropy in controlling the shape of particle distributions at the phase domain. Specifically, the local metastable state appears in the domain center is determined by the large entropy there which arises from the weak coupling of bond orientations that allows the polymer chains to be relatively relaxed. When the particle becomes selective, its distribution in the phase domain exhibits a shift almost uniformly rather than changes its profile, and the underlying physics still holds. In all, our study establishes a strong coupling between the chain rigidity and effect of entropy.
关 键 词:Semiflexible diblock copolymer Nanoparticle distribution Self-consistent field theory Entropic effect
分 类 号:TQ317[化学工程—高聚物工业]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229