检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:秘璐然 Mi Luran(China Institute of Network Communication,Shijiazhuang 050081,China)
机构地区:[1]中国电科网络通信研究院,河北石家庄050081
出 处:《无线互联科技》2024年第6期97-100,106,共5页Wireless Internet Technology
摘 要:相较于传统岸基超视距雷达、侦察飞机和侦察卫星等侦察定位手段,舰载超视距侦察定位系统具有布站灵活、成本低廉以及预警范围广等优点,但其相对于目标的位置会影响多舰对目标定位的精度。针对上述问题,文章提出了一种基于改进的粒子群优化算法的多舰布站优化方法,以测向交叉定位的几何精度因子作为适应度函数,进而循环迭代出最优的布站方法。在多舰协同侦察场景下,通过比较该算法与标准粒子群优化算法的优化结果,仿真分析2种方法在本场景下的寻优效果和迭代次数,该方法具有收敛速度更快、优化结果更好的特点。Compared with traditional shore-based over-the-horizon radar,reconnaissance aircraft,reconnaissance satellite and other reconnaissance and positioning means,shipborne over-the-horizon reconnaissance and positioning system has the advantages of flexible deployment,low cost and wide warning range,but relative to the target location will affect the accuracy of multi-ship target positioning.To solve the above problems,this paper proposes an optimization method of multi-ship positioning based on improved particle swarm optimization algorithm,and takes geometric dilution of precision of direction finding cross positioning as fitness function,and then iterates the optimal positioning method.In the multi-ship cooperative reconnaissance scenario,by comparing the optimization results of this algorithm and standard particle swarm optimization algorithm,the optimization effect and iteration times of the two methods in this scenario are simulated and analyzed.The proposed method has the characteristics of faster convergence speed and better optimization results.
关 键 词:协同侦察 布站优化 测向交叉定位 几何精度因子 粒子群优化算法
分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.224.32.173