基于多策略蜜獾算法的TDOA定位  

TDOA localization based on multi-strategy honey badger algorithm

在线阅读下载全文

作  者:张岳 蒲红平 陈伟 Zhang Yue;Pu Hongping;Chen Wei(Sichuan University of Science&Engineering,Yibin 644000,China;Artificial Intelligence Key Laboratory of Sichuan Province,Yibin 643000,China)

机构地区:[1]四川轻化工大学,四川宜宾644000 [2]人工智能四川省重点实验室,四川宜宾643000

出  处:《无线互联科技》2024年第5期1-6,23,共7页Wireless Internet Technology

摘  要:针对超宽带传感器TDOA定位估计的非线性最优问题,文章提出一种多策略改进的蜜獾优化的TDOA定位算法,通过引入Tent混沌映射函数、正余弦策略和Levy飞行多种策略进行改进,解决了传统蜜獾优化算法存在的局限性问题。文章首先建立TDOA算法适应度函数,通过改进的蜜獾算法得到定位信息,其次将定位信息作为Taylor算法的初始值,通过Taylor级数展开算法的进一步迭代,减小非视距误差,获得更高精度的定位结果。仿真实验结果表明,改进的多策略蜜獾算法与其他多种智能算法相比,具有更高的定位精度。In this paper,a positioning algorithm with multi-strategy improved honey badger optimization is proposed for the nonlinear optimal problem of TDOA positioning estimation for ultra-wideband sensors.Aiming at the partial limitations from the traditional honey badger optimization algorithm,it is improved by introducing multiple strategies,such as tent chaotic mapping function,cosine strategy,and Levy flight.Firstly,the fitness function for TDOA algorithms is established,and the positioning information is obtained by the improved honey badger algorithm.Secondly,the positioning information is used as the initial value of Taylor algorithm,and the NLOS error is reduced by iterating the Taylor expansion algorithm,so that a more accurate positioning result is obtained.Results of simulation experiments show that the improved multi-strategy honey badger algorithm has more higher positioning accuracy than other intelligent algorithms.

关 键 词:TDOA定位算法 蜜獾算法 Taylor级数展开 Levy飞行 

分 类 号:TN97[电子电信—信号与信息处理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象