近红外光谱的水体污染指标COD定量预测模型  

Quantitative prediction model of COD water pollution index based on near-infrared spectroscopy

在线阅读下载全文

作  者:范日高 王武[1] 郑芝芳 柴琴琴[1] FAN Rigao;WANG Wu;ZHENG Zhifang;CHAI Qinqin(College of Electrical Engineering and Automation,Fuzhou University,Fuzhou,Fujian 350108,China;Fuzhou GRG Metrology&Test Co.,Ltd.,Fuzhou,Fujian 350003,China)

机构地区:[1]福州大学电气工程与自动化学院,福建福州350108 [2]广电计量检测(福州)有限公司,福建福州350003

出  处:《福州大学学报(自然科学版)》2024年第2期228-235,共8页Journal of Fuzhou University(Natural Science Edition)

基  金:福建省自然科学基金资助项目(2021J01636);福州市科技重大资助项目(2021ZD282)。

摘  要:针对传统化学需氧量(chemical oxygen demand, COD)检测存在检测成本高、耗时、易造成二次污染,以及现有检测模型泛化性较差等不足,难以满足水环境实时监测需求的问题,提出基于近红外光谱技术的COD快速无损定量预测模型.实验结果表明,本模型在污水COD光谱数据集上的预测性能,相较于传统机器学习算法和现有其他深度学习算法更优.测试的决定系数(R^(2))和均方根误差(E_(RMS))分别达到0.992 1和27.47 mg·L^(-1),模型卷积层的输出特征可解释性强,能有效表征关键波长点.该预测模型为实际水体COD含量快速检测提供一种新的方法.The traditional chemical oxygen demand(COD)detection method is known for its high cost,time-consuming process,and potential for secondary pollution.Moreover,existing detection models often lack generalization,making it difficult to meet the demands of real-time water environment monitoring.In this study,we propose a rapid and non-destructive quantitative prediction model for COD based on near-infrared spectroscopy.Experimental results show that the prediction performance of this model on the sewage COD spectrum dataset is better than that of traditional machine learning algorithms and other existing deep learning algorithms.The model achieved a high coefficient of determination of 0.9921 and a low root mean square error of 27.47 mg·L^(-1).The output features of the model’s convolutional layer are interpretable and effectively capture the key wavelength points.This research provides a new method for the rapid detection of COD in practical water samples.

关 键 词:化学需氧量 定量预测模型 近红外光谱 水环境 实时监测 一维卷积神经网络 

分 类 号:TP183[自动化与计算机技术—控制理论与控制工程] O433.4[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象