基于BERT-LSTM模型的WebShell文件检测研究  

Research on WebShell file detection based on BERT-LSTM model

在线阅读下载全文

作  者:邓全才 徐怀彬 Deng Quancai;Xu Huaibin(College of Information Engineering,Hebei University of Architecture,Zhangjiakou 075000,China)

机构地区:[1]河北建筑工程学院信息工程学院,河北张家口075000

出  处:《网络安全与数据治理》2024年第4期24-27,共4页CYBER SECURITY AND DATA GOVERNANCE

摘  要:针对基于传统规则的WebShell文件检测难度大,采用文本分类的思想,设计了一种基于BERT-LSTM模型的WebShell检测方法。首先,对现有公开的正常PHP文件和恶意PHP文件进行清洗编译,得到指令opcode码;然后,通过变换器的双向编码器表示技术(BERT)将操作码转换为特征向量;最后结合长短期记忆网络(LSTM)从文本序列角度检测特征建立分类模型。实验结果表明,该检测模型的准确率为98.95%,召回率为99.45%,F1值为99.09%,相比于其他模型检测效果更好。Aiming at the difficulty of WebShell file detection based on traditional rules,a WebShell detection method based on BERT-LSTM model is designed using the idea of text classification.Firstly,the existing publicly available normal PHP files and malicious PHP files are cleaned and compiled to get the instruction opcode code;then,the opcode is converted into a feature vector by the bi-directional encoder representation technique(BERT)of the transformer;finally,the classification model is built by combining with the long-short-term memory network(LSTM)to detect the features from the perspective of text sequence.The experimental results show that the detection model has an accuracy of 98.95%,a recall of 99.45%,and an F1 value of 99.09%,which is better compared to other models for detection.

关 键 词:BERT LSTM WEBSHELL PyTorch 

分 类 号:TP309[自动化与计算机技术—计算机系统结构] TP393[自动化与计算机技术—计算机科学与技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象